Chapter 5 Notes
©2009 by S. Gramlich
(updated 9/30/2014)
Probability
Distribution
! = Important Note
! These Notes are not meant to replace
5-2
Probability Distribution (PD) Requirements:
1) x discrete
2) 0 <= P(x) <= 1
3) ∑P(x) = 1
if the PD meets the above requirements then proceed with finding the following parameters:
mean: μ = ∑[x * P(x)]
variance: σ2 = ∑[(x-μ)2 * P(x)]
standard deviation: σ = √σ2
! I am citing Formula 5-2 from text but may have to use Formula 5-3 instead to get same answer in HW
Range Rule of Thumb (Confidence Interval) for finding interval of usual scores:
max = μ + 2*σ
min = μ - 2*σ
so any # outside of the usual interval [min, max] is considered unusual.
Expected Value= average over long run
E = ∑[x * P(x)]
5-3
Inequality Complements
Prob(X at least #) = P(X >= #) = P(#) + P(# + 1) + P(# + 2) +…+ P(n)
=1 – P(X not at least #) = 1 – P(X < #) = 1 – [P(0) + P(1) +…+ P(#-1)]
Prob(X more than #) = P(X > #) = P(# + 1) + P(# + 2) +…+ P(n)
=1 – P(X not more than #) = 1 – P(X <= #) = 1 – [P(0) + P(1) +…+P(#)]
Prob(X at most #) = P(X <= #) = P(0) + P(1) +…+P(#)
= 1– P(X not at most #) = 1 – P(X >= #) = 1 – [P(#) + P(# + 1) + P(# + 2) +…+ P(n)]
Prob(X fewer than #) = P(X < #) = P(0) + P(1) +…+ P(#-1)
=1 – P(X not fewer than #) = 1 - P(X >= #) = 1 – [P(#) + P(# + 1) + P(# + 2) +…+ P(n)]
Binomial (Bernoulli)
Probability Distribution
Meets requirements for PD and:
P(X) = nCx * px * qn – x where p = Prob(success) and q = Prob(failure) = 1 – p
Or
Use Table A-1 if 2 <= n <= 15 and given p on table
5-4 Binomial
mean: μ = np
variance: σ2
= npq = μq
standard deviation: σ = √σ2
μ - 2*σ <= usual <= μ + 2*σ
5-5 Poisson
Meets requirements for PD and:
P(X) = (μx * e-μ) / x!
mean= variance: μ=
σ2
standard deviation: σ = √ μ
TECHNOLOGY
using StatCrunch:
Stat – Calculators – Binomial
Stat – Calculators – Hypergeometric (“n” = A + B, “m” = “k” = A)
Stat – Calculators – Poisson
EXCEL 2007 commands:
=BINOMDIST(x, n, p, True/False)
=POISSON(x, μ, True/False)
False for =
True for <=
==HYPGEOMDIST(x, n, A, A+B)