1. A cardiac monitor is used to measure the heart rate of a patient after surgery. It compiles the number of heartbeats after t minutes. When the data in the table are graphed, the slope of the tangent line represents the heart rate in beats per minute.

<table>
<thead>
<tr>
<th>t (min)</th>
<th>36</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heartbeats</td>
<td>2307</td>
<td>2438</td>
<td>2567</td>
<td>2693</td>
<td>2819</td>
</tr>
</tbody>
</table>

The monitor estimates this value by calculating the slope of a secant line. Use the data to estimate the patient's heart rate after 42 minutes using the secant line between the point with $t = 42$ and the point with $t = 44$.

a. 64.5
b. 63
c. 66
d. 61.5
e. 60

2. The point $P\left(1, \frac{1}{2}\right)$ lies on the curve $y = \frac{x}{x + 1}$. If Q is the point $\left(x, \frac{x}{x + 1}\right)$, use your calculator to find the slope of the secant line PQ (rounding to six decimal places) for the following values of x.

<table>
<thead>
<tr>
<th>x</th>
<th>m_{PQ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>0.999</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>
3.

If an arrow is shot upward on the moon with a velocity of 51 m/s, its height in meters after t seconds is given by $h = 51t - 0.83t^2$. Find the average velocity over the given time intervals. Round to the nearest hundredth.

<table>
<thead>
<tr>
<th>t</th>
<th>$v(\text{m/s})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1, 2]</td>
<td></td>
</tr>
<tr>
<td>[1, 1.5]</td>
<td></td>
</tr>
<tr>
<td>[1, 1.1]</td>
<td></td>
</tr>
<tr>
<td>[1, 1.01]</td>
<td></td>
</tr>
<tr>
<td>[1, 1.001]</td>
<td></td>
</tr>
</tbody>
</table>

4.

The position of a car is given by the values in the table.

<table>
<thead>
<tr>
<th>t (seconds)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>s (feet)</td>
<td>0</td>
<td>11</td>
<td>31</td>
<td>70</td>
<td>120</td>
<td>175</td>
</tr>
</tbody>
</table>

Find the average velocity (rounding to the nearest tenth, if necessary) for the time period beginning when $t = 0$ and lasting

(a) 3 seconds $\underline{?}$ ft/s

(b) 2 seconds $\underline{?}$ ft/s

(c) 1 second $\underline{?}$ ft/s

5.

For the function f whose graph is given, state the value of each quantity, if it exists. If it doesn't exist, explain why.
6.

For the function \(g \) whose graph is given, state the value of the given quantity, if it exists. If it does not exist indicate it.

\[
\begin{align*}
\lim_{{x \to 3^-}} f(x) & = \underline{\quad} \\
\lim_{{x \to 3^+}} f(x) & = \underline{\quad} \\
\lim_{{x \to 3}} f(x) & = \underline{\quad} \\
\lim_{{x \to 0}} f(x) & = \underline{\quad} \\
f(3) & = \underline{\quad}
\end{align*}
\]
Match each limit in the left column with the corresponding value in the right column.

g(0)	0
\(\lim_{{x \to 4^+}} g(x) \)	3
\(\lim_{{x \to 0}} g(x) \)	6
\(\lim_{{x \to -4^+}} g(x) \)	doesn't exist

7.

For the function \(f \) whose graph is shown below, determine which of the following statements are true.

\[
\text{a. } \lim_{{x \to -4}} f(x) = \infty
\]
b. \(\lim_{{x \to 6^+}} f(x) = \infty \)

c. Equations of the vertical asymptotes are \(x = -7, x = -4, x = 0, \) and \(x = 6. \)

d. \(\lim_{{x \to -4}} f(x) = -\infty \)

e. \(\lim_{{x \to 0}} f(x) = -\infty \)

8. Which of the following limits are equal to \(\infty \)?

a. \(\lim_{{x \to 2^+}} \frac{7}{x - 2} \)

b. \(\lim_{{x \to 0}} \frac{x - 2}{x^2 (x + 8)} \)

c. \(\lim_{{x \to 2^-}} \frac{7}{x - 2} \)

d. \(\lim_{{x \to 4}} \frac{7 - x}{(x - 4)^2} \)

e. \(\lim_{{x \to 7\pi^+}} \cot x \)

9. The slope of the tangent line to the graph of the exponential function \(y = 11^x \) at the point \((0, 1) \) is \(\lim_{{x \to 0}} \frac{11^x - 1}{x} \). Estimate the slope of this tangent line.

a. 2.52
b. 2.44
c. 2.56
d. 2.48
e. 2.40
Given that

\[\lim_{x \to a} f(x) = -6 \quad \lim_{x \to a} h(x) = 9 \]

find the limit

\[\lim_{x \to a} [f(x) + h(x)]. \]

11.
Given that

\[\lim_{x \to a} f(x) = -1 \]

find the limit

\[\lim_{x \to a} [f(x)]^2. \]

12.
Given that

\[\lim_{x \to a} f(x) = -2 \quad \lim_{x \to a} g(x) = 0 \]

find the limit

\[\lim_{x \to a} \frac{g(x)}{f(x)}. \]

13.
Given that

\[\lim_{x \to a} f(x) = -2 \quad \lim_{x \to a} h(x) = 5 \]

find the limit

\[\lim_{x \to a} \frac{2f(x)}{h(x) - f(x)} . \]

14.

The graphs of \(f \) and \(g \) are given. Use them to evaluate each limit, if it exists.

\(y = f(x) \)
\(y = g(x) \)

(a) \(\lim_{x \to -2} [f(x) + g(x)] \)

(b) \(\lim_{x \to 1} [f(x) + g(x)] \)

(c) \(\lim_{x \to 0} [f(x)g(x)] \)

(d) \(\lim_{x \to -1} \frac{f(x)}{g(x)} \)
15. Evaluate the limit.

$$\lim_{x \to 2} \left(2x^4 + 3x^2 - x + 4 \right)$$

16. Evaluate the limit.

$$\lim_{x \to 8} \frac{x^2 + 9x + 8}{x^2 + 7x - 8}$$

17. Find the limit.

$$\lim_{x \to -2} \frac{x^2 + 3x + 2}{x^2 + x - 2}$$

a. \(\frac{7}{5} \)
b. \(\frac{13}{14} \)
c. \(\frac{2}{3} \)
d. \(\frac{1}{3} \)
e. \(\frac{13}{8} \)

18.
Find \(\lim_{{h \to 0}} \frac{(3 + h)^2 - 9}{h} \).

a. 12
b. 8
c. 10
d. 6
e. 14

19. Evaluate the limit. Simplify.

\(\lim_{{x \to 1}} \frac{x^3 - 1}{x^2 - 1} \)

20. Evaluate the limit.

\(\lim_{{h \to 0}} \frac{(4 + h)^3 - 64}{h} \)