Recall that the derivative of a function \(f \) is defined to be
\[
\frac{f'(x)}{h} = \lim_{{h \to 0}} \frac{f(x+h) - f(x)}{h}
\]
if the limit exists.

1. Use the definition to write the derivative of \(f(x) = \frac{1}{x^2} \)

2. Use the definition to write the derivative of \(g(x) = x^3 - x^2 \)

3. Use the definition to write the derivative of \(h(x) = -2x^2 + 4x + 1 \)

4. Using the definition above, compute \(h'(x) \). Please use the definition, but you should already know what the answer is.

5. Using your answer above, find the values of \(x \) for which \(h \) is increasing and the values of \(x \) for which \(h \) is decreasing.