1. On which intervals is the function \(f(x) = x^3 - 3x^2 + 1 \) increasing? Where is it decreasing? Here is a picture from maple to help.

\[f(x) = x^3 - 3x^2 + 1 \]

2. Where is the above function concave up (-leaning to the left) and concave down?

3. Locate the relative extrema of the function \(f(x) = 3\sqrt{x^3} - 15\sqrt{x^2} \) and determine whether they are maxima or minima.

4. Let \(C = 7L + \frac{48}{L} \) with domain \(0 < L \). Find the least possible value of \(C \). Make sure to explain why the value you chose was the least, not perhaps the greatest.

5. (Do you understand Newton’s method?) Here is a simple test. Fill in the question mark in each table with the number Newton would give for his guess at the right answer.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(y')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-27</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(y')</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-1</td>
<td>10</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

6. Find a good approximation for the positive root of \(x^2 - x - 4 \) using Newton’s method.

7. What does the mean value theorem say about the function \(f(x) = x^2 - x - 4 \) on the interval \([0, 4]\)?

8. For question above, find the number in the interval \([0, 4]\) guaranteed by the mean value theorem to exist.

9. Extra credit. Show that it is no accident that it lies at the midpoint of the interval.

10. If \(f \) and \(g \) are function for which \(f'(x) = g(x) \) and \(g'(x) = f(x) \) for all \(x \), show that \(f^2(x) - g^2(x) \) is a constant. (Hint: take the derivative using the chain rule, show that it is zero, and then quote a theorem.)

11. What does the mean value theorem say about the function \(f(x) = |x - 1| \) on the interval \([-2, 2]\)?

12. Use L’Hopital’s rule if applicable to find the following limits:
a) \[\lim_{x \to 1} \frac{\ln x}{x - 1} \]

b) \[\lim_{x \to 0} \frac{\sin(ax)}{x} \]

c) \[\lim_{x \to 0} x^x \]

d) \[\lim_{x \to 0} \frac{\cos x}{x} \]

13. Definition: If \(f \) is continuous on \([a, b]\), the **definite integral of** \(f \) **from** \(a \) **to** \(b \) **is**

\[\int_{a}^{b} f(x) \, dx = \]

14. Define each symbol on the right hand side of the equal sign above.

15. Given that

\[\sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2} \right]^2 \]

find \[\int_{0}^{2} x^3 \, dx \]

16. Suppose \(\int_{3}^{7} f(x) \, dx = 12, \int_{3}^{10} f(x) \, dx = 20 \). What is \(\int_{7}^{10} f(x) \, dx \)?

17. For the function above, what is \(\int_{7}^{10} f(x) \, dx \)?

18. What is the biggest \(\int_{0}^{\pi} x \sin x \, dx \) can possibly be?

19. At this point, why is the fundamental theorem of calculus useless to you for evaluating the above integral?

20. What is the derivative of \(\int_{a}^{x} f(t) \, dt \)?

21. What is the derivative of \(\int_{1}^{x} \frac{1}{2t} \, dt \)?

22. Find another expression for all such functions whose derivative is the same as above.

23. Evaluate \(\int_{1}^{2} \frac{1}{2t} \, dt \)

24. Evaluate \(\int_{1}^{2} \frac{x^2 + 1}{\sqrt{x}} \, dx \)

25. Show that the derivative of \(-x\cos x + \sin x\) is \(x\sin x \).

26. Evaluate the integral in problem 18.