Some things to try in MAPLE:
1. Try some simple arithmetic. For example, compute \(4 \times 5 + 4 \times 2 + 3 \times 2 + 3 \times 2\). Use * for multiplication. After the expression, put a semicolon ";" and hit Enter. Here is my example:

 \[4 \times 5 + 4 \times 2 + 3 \times 2 + 3 \times 2;\]

Try some of your own.

Now try to find \(3 + \sqrt{15}\) by typing

\[3 + \sqrt{15};\]

If we want the decimal form, type

\[\text{evalf}(\%);\] The \% means the previous line.

2. The function \(e^x\) is written

\[\exp(x); \text{ try } \exp(2);\]

\(\ln x\) is written \(\ln(x)\)

or as \(\log(x)\)

\(\log_{10} x\) is \(\log[10](x)\); try \(\log[10](1000.)\);

\(\log_e x\) is \(\log[2](x)\); try \(\log[2](512.)\);

3. Graphing in maple is easy. To graph \(y = x^2 + 3x - 2\) type

\[\text{plot}(x^2 + 3x - 2, x);\]

To graph \(\log(x)\) and \(\exp(x)\) over the interval from \(-1\) to \(3\) on the same axis, type

\[\text{plot}({\exp(x), \log(x)}, x=-1..3);\]

4. Graph \(y = \left(\frac{4}{7}\right)^x, y = x,\) and \(y = \log_{\frac{4}{7}} x\) over the interval from \(-3\) to \(3\) by typing

\[\text{plot}({(\frac{4}{7})^x, \log[4/7](x), x}, x=-3..3, -3..3);\]

5. On your own, plot \(y = 2^x\) and \(y = \log_2 x\).

6. Plot \(-\log x\) and \(\log\left(\frac{1}{x}\right)\)

7. Plot \(\log(x), \log(x+2)\) and \(\log(x)+2\) by typing

\[\text{plot}({\log(x), \log(x+2), \log(x)+2}, x);\]

Make sure you can identify which one is which.

8. Maple can easily handle the many exponential and logarithmic equations. For example, in Section 5.4 number 31: \(4(3^x) = 20\) to solve for \(x\) type

\[\text{solve}(4 \times 3^x = 20, x);\]

Try the others.