Review 4

Find the minimum sample size y error around the population p.	ou should use to assure	that your estimate of p wi	ll be within the required margin of
1) Margin of error: 0.002;	confidence level: 93%: 1	n η η η η η η η η η η η η η η η η η η η	
A) 410	B) 409	C) 204,757	D) 204,756
2) Margin of error: 0.07: o	confidence level: 90%: fr	om a prior study, p is estim	ated by 0.19.
A) 75	B) 85	C) 255	D) 6
Use the given degree of confiden	ice and sample data to c	onstruct a confidence inter	val for the population proportion p.
3) Of 346 items tested, 12	are found to be defective	e. Construct the 98% confide	ence interval for the
proportion of all such i			
A) 0.0345		B) 0.0154	
C) 0.0118		D) 0.0110	
Use the confidence level and san	nple data to find a confi	dence interval for estimation	ng the population μ.
4) A random sample of 79	light bulbs had a mean	life of $\bar{x} = 400$ hours with a	standard deviation of
σ = 28 hours. Construct	a 90 percent confidence	interval for the mean life, μ	ப, of all light bulbs of
this type.			
A) $393 < \mu < 407$	B) $394 < \mu < 406$	C) $395 < \mu < 405$	D) $392 < \mu < 408$
Use the margin of error, confider	nce level, and standard	deviation σ to find the mir	nimum sample size required to
estimate an unknown population	n mean μ.		
5) Margin of error: \$121, o	confidence level: 95%, σ	= \$528	
A) 4	B) 64	C) 2	D) 74
Use the given degree of confiden	ice and sample data to c	onstruct a confidence inter	val for the population mean μ.
Assume that the population has			
•	00	und that the mean amount o	
-	-	a 95 percent confidence inte	rval for the true mean
cholesterol content of a	ll such eggs.	T) 102	
A) $185.0 < \mu < 201.0$		B) $183.2 < \mu < 202.8$	
C) 183.1 < μ < 202.9		D) 183.3 < μ < 202.7	
Find the appropriate minimum s	ample size.		
	-	variance is within 30% of the	e population variance.
A) 346	B) 723	C) 97	D) 130
Use the given degree of confiden	ice and sample data to f	ind a confidence interval fo	or the population standard deviation
σ. Assume that the population h	-		
8) The amounts (in ounce	s) of juice in eight rando	mly selected juice bottles are	e:
15.7 15.6 15.3 15.3			
15.1 15.6 15.3 15.4			
_	_	pulation standard deviatior	ι σ.
A) (0.17, 0.66)	B) (0.12, 0.42)	C) (0.13, 0.42)	D) (0.13, 0.48)

Answer Key Testname: REVIEW 4

- 1) C 2) B 3) C 4) C 5) D 6) B 7) C 8) D

Solutions

Problem 1

We use formula 7-3 on page 328

$$n = \frac{[z_{\alpha/2}]^2 \cdot 0.25}{F^2}.$$

In our case E=0.002, $\alpha=1-0.93=0.07$, $\alpha/2=0.035$. From Table A-2 we find $z_{0.035}=1.81$

Plugging in the numbers into the formula above and rounding to the nearest larger integer we get n = 204757. The correct answer is "C".

Problem 2

We use formula 7-2 on page 328

$$n = \frac{[z_{\alpha/2}]^2 \, \hat{p}(1-\hat{p})}{E^2}.$$

In this problem

$$E = 0.07$$
, $\hat{p} = 0.19$, $1 - \hat{p} = 0.81$, $\alpha = 0.10$, $z_{\alpha/2} = z_{0.05} = 1.645$.

Therefore n = 85. The correct answer is "B".

Problem 3

We use the formula on page 326 for the confidence interval

$$\hat{p} - E where $E = z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$.$$

Into this formula we plug in the numbers

$$\hat{p} = \frac{12}{346} \approx 0.0347, \quad 1 - \hat{p} \approx 0.9653, \quad n = 346,$$

$$z_{\alpha/2} = z_{0.01} = 2.33,$$

 $z_{\alpha/2} = z_{0.01} = 2.55$, and compute $E \approx 0.0229$, whence the confidence interval is

$$0.0118 .$$

The correct answer is "C".

Problem 4

We use the formula from Page 340 for the confidence interval for the population mean

$$\overline{x} - E < \mu < \overline{x} + E$$
, where $E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$.

Plugging in the numbers

$$n = 79$$
, $\overline{x} = 400$, $\sigma = 28$, $z_{\alpha/2} = z_{0.05} = 1.645$

we find that $E = 1.645 \cdot \frac{28}{\sqrt{79}} \approx 5.18$. Rounding to the nearest larger integer we take

E = 6 whence the confidence interval is $394 < \overline{x} < 406$. The correct answer is "B".

Problem 5

We use formula 7-5 on page 343

$$n = \left\lceil \frac{z_{\alpha/2}\sigma}{E} \right\rceil^2$$

where E = 121, $\sigma = 528$, $z_{\alpha/2} = z_{0.025} = 1.96$. Therefore

$$n = \left\lceil \frac{1.96 \cdot 528}{121} \right\rceil^2 \approx 73.15$$
.

Rounding upward we get n = 74. The correct answer is "D".

Problem 6

We use formula on page 351

$$\overline{x} - E < \mu < \overline{x} + E$$
, where $E = t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$

and t is the Student distribution with n-1 degrees of freedom. In our case n = 12 and the number of degrees of freedom is 11. From Table A-3 on age 774 we find

$$t_{0.025} = 2.201$$
 whence $E = 2.201 \cdot \frac{15.4}{\sqrt{12}} \approx 9.8$ and the confidence interval is

$$183.2 < \mu < 202.8$$
.

The correct answer is "B".

Problem 7

From Table 7-2 on page 371 we find that the sample size should be 97. The correct answer is "C".

Problem 8

We use the formula on page 367

$$\sqrt{\frac{(n-1)s^2}{\chi_R^2}} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi_L^2}}.$$

From formula 3-5 on page 94 we see that

$$(n-1)s^2 = \sum x^2 - (\sum x)^2 / n = 1900.65 - 123.3^2 / 8 = 0.28875$$
.

Looking at Table A-4 and noticing that the number of degrees of freedom is 7, area to the right of χ_L^2 is 0.99, and area to the right of χ_R^2 is 0.01, we see that $\chi_L^2 = 1.239$ and $\chi_R^2 = 18.475$. Therefore the confidence interval is

$$\sqrt{\frac{0.28875}{18.475}} < \sigma < \sqrt{\frac{0.28875}{1.239}}$$
.

Or after rounding the left bound downward and the right one upward we obtain $0.12 < \sigma < 0.49$.

The closest answer to the one we got is "D".