Math 172

Review for the final exam.

1. Find the integrals.(32)
 (a) \(\int x \tan^{-1} x \, dx \);
 (b) \(\int \frac{1}{t^2+2t+2} \, dt \);
 (c) \(\int \cos^3 x \sin^{1/2} x \, dx \);
 (d) \(\int \frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}} \, dx \).

2. Find the improper integral \(\int_2^\infty \frac{1}{x^{1/2}-1} \, dx \).(10)

3. Find the area of the region enclosed by an ellipse,
 \(x = 3 \sin(t), y = 4 \cos(t), 0 \leq t \leq 2\pi \).(10)

4. Find the volume of the solid generated when the region bounded by
 \(y = 2 - x, y = \sqrt{x} \) and \(x = 0 \) is revolved about x-axis.(10)

5. Find the coordinates of the center of mass for the region described in the
 previous problem. (10)

6. Determine whether the series absolutely converges conditionally
 converges or diverges.(20)
 (a) \(\sum_{k=2}^{\infty} \frac{1}{\sqrt{k^6-4k}} \);
 (b) \(\sum_{k=1}^{\infty} (-1)^k \frac{k}{k^2+2} \);
 (c) \(\sum_{k=1}^{\infty} (-1)^k \frac{\ln k}{k} \);
 (d) \(\sum_{k=1}^{\infty} \frac{\tan^{-1} k}{k} \).

7. Find the function to which the series \(\sum_{k=1}^{\infty} (k - 1)x^{k+1} \) converges.(6)

8. Find the Taylor series about \(x = a \) for the given function; express your
 answer in sigma notation(\(\Sigma \)); then find its radius of convergence and the
 interval of convergence.(12)
 (a) \(f(x) = \frac{1}{x^2}, \) at 0;
 (b) \(f(x) = \ln x, \) at 2.