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Infinite Sequences and Series 

APPLICATIONS OF TAYLOR POLYN 

In this section we explore two types of applications of Taylor polynomials. First 
at how they are used to approximate functions-computer scientists like 
polynomials are the simplest of functions. Then we investigate how physicists 
neers use them in such fields as relativity, optics, blackbody radiation, electric 
velocity of water waves, and building highways across a desert. 

APPROXIMATING FUNCTIONS BY POLYNOMIALS 
,,,,,,,,,,,,,,,,,,,,,,,,.,,,, ""'""""................. , """,. 

Suppose that f(x) is equal to the sum of its Taylor series at a: 

00 In)(a)
f(x) = 2: -­ (x - a)n 

n~O n! 

In Section II.to we introduced the notation Tn(x) for the nth partial sum of 
and called it the nth-degree Taylor polynomial of f at a. Thus 

n lO(a) . 
Tn(x) = 2: -.-- (x - a)' 

j=() l! 

I'(a) /"(a) In)(a) 
= f(a) + ~"-(x - a) + --(x - a? + ... + --(x

I! 2! n! 

Since f is the sum or its Taylor series, we know that Tn(x) -'J> f(x) as n ~:xl 
be used as an approximation to f: f(x) = Tn(x). 

Notice that the first-degree Taylor polynomial 

T1(x) = f(a) + I'(a)(x a) 

is the same as the linearization of f at a that we discussed in Section 3.10. 
TI and its derivative have the same values at a that f and I' have. In 
shown that the derivatives of Tn at a agree with those of f up to and 
of order n (see Exercise 38) . 

To illustrate these ideas let's take another look at the graphs of y 
Taylor polynomials, as shown in Figure I. The graph of TI is the tangent 
at (0. 1); this tangent line is the best linear approximation to eX near (0, 
of T2 is the parabola y 1 + x + x 2/2, and the graph of T3 is the 
y = 1 + x + x 2/2 + x 3/6, which is a closer fit to the exponential curve y 
The next Taylor polynomial T4 would be an even better approximation, and 

The values in the table give a numerical demonstration of the t'f'ln,vpr.crpn,..., 

polynomials Tn(x) to the function y = eX. We see that when x 
very rapid, but when x 3 it is somewhat slower. In fact, the farther x is 
slowly Tn(x) converges to eX, 

When using a Taylor polynomial Tn to approximate a function I, we 
questions: How good an approximation is it? How large should we take n 
achieve a desired accuracy? To answer these questions we need to look 
value of the remainder: 

IRII(x) I If(x) - Tn(x) I 
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There are three possible methods for estimating the size of the error: 

I. 	 If a graphing device is available, we can use it to graph IRn(x) I and thereby esti­
mate the error. 

2. 	If the series happens to be an alternating series, we can use the Alternating Series 
Estimation Theorem. 

3. 	 In all cases we can use Taylor's Inequality (Theorem 11.10.9), which says that if 
I/(n+I)(x) 1 ~ M, then 

M 
IR (x) I~ . Ix a In+ I 

II (n,+ 1)! 

~ EXAMPLE I 
(a) Approximate the function/(x) = {jX by a Taylor polynomial of degree 2 at a 8. 
(b) How accurate is this approximation when 7 ~ x ~ 9? 

SOLUTION 
(a) 	 I(x) = {jX = X 1/3 1(8) 2 

h-2/3f'(x) 	 1'(8) = I~ 
3I"(x) -h-S

/ 1"(8) = - f.h 
f"'(x) = !¥[8/3 

Thus the second-degree Taylor polynomial is 

1'(8) 1"(8)
T2(x) = 1(8) + -- (x - 8) + -- (x - 8)2

l! 2! 

= 2 + Mx - 8) 2!R (x - W 

The desired approximation is 

{jX = T2(x) = 2 + 12(x - 8) ~8(X - W 

(b) The Taylor series is not alternating when x < 8, so we can't use the Alternating 
Series Estimation Theorem in this example. But we can use Taylor's Inequality with 
n = 2 and a = 8: 

M 
IR2(x) I~ 3.,Ix 81 3 

8/3where If"'(x) I~ M. Because x ~ 7, we have X ~ 78/3 and so 

",() 10 1 10 1x = -"- . - ~ - . - < 0.0021I 8/3 78/327 X 27 

Therefore we can take M 0.0021. Also 7 ~ x ~ 9, so I ~ x - 8 ~ 1 and 
Ix - 81 ~ L Then Taylor's Inequality gives 

1R (x) I ~ 0.002] 3 0.0021 < 0.0004 
2 3! • 1 6 

Thus, if 7 ~ x ~ 9, the approximation in part (a) is accurate to within 0.0004. 0 
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Let's use a graphing device to check the calculation in Example L Figure 2 shows 
the graphs of y ifX and y T2(x) are very close to each other when x is near 8. 
ure 3 shows the graph of IR2(x) Icomputed from the expression 

We see from the graph that 

when 7 ~ x ~ 9. Thus the error estimate from graphical methods is slightly better 
error estimate from Taylor's Inequality in this case. 

['3 EXAMPLE 2 
(a) What is the maximum error possible in using the approximation 

3 5 

sinx=x- -
x +-x
3! 5! 

when -0.3 ~ x ~ 0.3? Use this approximation to find sin 12° correct to six decimal 
places. 
(b) For what values of x is this approximation accurate to within 0.00005? 

~01.1I110N 

(a) Notice that the Maclaurin series 

sin x = x 

is alternating for all nonzero values of x, and the successive terms decrease in size 
because Ix I < 1, so we can use the Alternating Series Estimation Theorem. The error 
in approximating sin x by the first three terms of its Maclaurin series is at most 

M 
5040 

If -0.3 ~ x ~ 0.3, then Ix I~ 0.3, so the error is smaller than 

(0.3)7 "'" 4 3 X 10-8 

5040 . 

To find sin 12° we first convert to radian measure. 

. 20sm 1 = . (12'IT)sm -­
180 

= . ('IT)sm -
15 

:= 
'IT 

-
15 

-
('IT)31

-
15 3! 

+ ('IT)51- -
15 5! 

"'" 0 20791169 
. 

Thus, correct to six decimal places, sin 12° = 0.207912. 

(b) The error wil1 be smaller than 0.00005 if 

Ixl7 

5040 < 0.00005 
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~s that Solving this inequality for x, we get 
18. Fig­

Ixl7 < 0.252 or Ix I < (0.252)1/7 = 0.821 

I So the given approximation is accurate to within 0.00005 when Ix I < 0.82. [] 

iil.3 Module I LI 0/11.11 graphically What if we use Taylor's Inequality to solve Example 2? Since Jl7l(x) = -cos x, weI mows the remainders in Taylor polynomial have IJl7)(x) I """ 1 and so 

awroximations. 


IR6(x) I """ 7! 
1 

Ix l7 

4.3 x IWa 

So we get the same estimates as with the Alternating Series Estimation Theorem. 
What about graphical methods? Figure 4 shows the graph of 

IR6(x) I Isin x - (x h3 + I~OX5) I 
and we see from it that IR6(X) I< 4.3 X 10-8 when Ix J """ 0.3. This is the same estimate 

0.3 that we obtained in Example 2. For part (b) we want IR6(X) I < 0.00005, so we graph both o 
y IR6(x) Iand y = 0.00005 in Figure 5. By placing the cursor on the right intersection 
point we find that the inequality is satisfied when Ixl < 0.82. Again this is the same esti­
mate that we obtained in the solution to Example 2. 

0.00006>, If we had been asked to approximate sin 72° instead of sin 12° in Example 2, it would 
0.00005 have been wise to use the Taylor polynomials at a 7T/3 (instead of a 0) because they 

are better approximations to sin x for values of x close to 7T/3. Notice that 72° is close to I 

) 
60° (or 7T/3 radians) and the derivatives of sin x are easy to compute at 7T/3. 

Figure 6 shows the graphs of the Maclaurin polynomial approximations 
y = IR6(x)11 

3x 
/ TI(X) = x Tb) =x 

3!o 
3 S 3 5 7r x X x x x 

Ts(x) = x -+- T7(X) = x - 3T + 5!3! 5! 7! 

to the sine curve. You can see that as n increases, Tn(x) is a good approximation to sin x on 
a larger and larger interval. 

FIGURE 6 

One use of the type of calculation done in Examples 1 and 2 occurs in calculators and 
computers. For instance, when you press the sin or eX key on your calculator, or when a 
computer programmer uses a subroutine for a trigonometric or exponential or Bessel func­
tion, in many machines a polynomial approximation is calculated. The polynomial is often 
a Taylor polynomial that has been modified so that the error is spread more evenly through­
out an interval. 

APPLICATIONS TO PHYSICS 
...~,~.~~_____._................a.__'''_'',,______• __.,,~_ ........._____" ..",.....___• __.__ __..._ .........._ ..._ ••••__,,___ 


Taylor polynomials are also used frequently in physics. In order to gain insight into an 
equation, a physicist often simplifies a function by considering only the first two or three 
terms in ils Taylor series. In other words, the physicist uses a Taylor polynomial as an 

T, 

.,,//'
T \ T Y=sin x 

3 \ 7 
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. The upper curve in Figure 7 is the graph of 
the expression for the kinetic energy K of an 
object with velocity v in special relativity. The 
lower curve shows the function used for K in 
classical Newtonian physics. When v is much 
smaller than the speed of light. the curves are 
practically identical. 

K 

o c /) 

FIGURE 7 

approximation to the function. Taylor's Inequality can then be used to gauge the 
of the approximation. The following example shows one way in which this idea is used 
special relativity. 

~ EXAMPLE 1 In Einstein's theory of special relativity the mass of an object moving 
with velocity v is 

where mo is the mass of the object when at rest and e is the speed of light The kinetic 
energy of the object is the difference between its total energy and its energy at rest: 

2 2K = me moe

(a) Show that when v is very small compared with e, this expression for K agrees with 
classical Newtonian physics: K = 4mov2. 
(b) Use Taylor'S Inequality to estimate the difference in these expressions for K when 
Ivl,,;: lOOmis. 

SOLUTION 
(a) Using the expressions given for K and m, we get 

V2)-1/2 ] 
= moe2 

[( I - -;;z - 1 

With x = -v2/e2, the Maclaurin series for (1 + X)-1/2 is most easily computed as a 
binomial series with k = (Notice that Ix I < I because v < c.) Therefore we have 

(l + X)-1/2 1 _!x + (-o(-D x 2 + (-D(-D(-~) x 3 + ... 
2 2! 3! 

and 

If v is much smaller than e, then all terms after the first are very small when compared 
with the first term. If we omit them, we get 

2 
2 (1 v ) I 2K"'" moe "2-;;Z = imov 

(b) Ifx -v2/e2,/(x) = moe2[(l + X)-1/2 1], and M is a number such that 
I!"(x) I ,,;: M, then we can use Taylor's Inequality to write . 

IR.(x) I ,,;: M x 2 

2! 

We have!"(x) = ~moe2(l + xt5
/ 
2 and we are given that I v I ,,;: 100 mis, so 

I!"(x) 1= M)
4(1 
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fiGURE 8 
Refraction at a spherical interface 

Here we use the identity 

cos('IT - </» = -cos </> 
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Thus, with c 3 X 108 mis, 

1 3moc< 1004 

IR1(x)I';;;-2' ( ·-4-«4.17XlO lO )mo
4 1 - c 

So when Iv I .;;; lOOmis, the magnitude of the error in using the Newtonian expression 
for kinetic energy is at most (4.2 X lO-lO)mo. 0 

Another application to physics occurs in optics. Figure 8 is adapted from Optics, 
4th ed., by Eugene Hecht (San Francisco: Addison-Wesley, 2002), page 153. It depicts a 
wave from the point source S meeting a spherical interface of radius R centered at C. The 
ray SA is refracted toward P. 

'" 

c· 
-­ 0 

~ 

So""" """""""..........""""~ .. $ 
" 

i 
Using Fermat's principle that light travels so as to minimize the time taken, Hecht 

derives the equation 

~ + ~~ =..!.. (n2si _ !lISO) 
fo f; R f; fo 

where nl and n2 are indexes of refraction and fo, fi' so, and S; are the distances indicated in 
Figure 8. By the Law of Cosines, applied to triangles ACS and ACP, we have 

fo JR2 + (so + R)2 - 2R(so + R) cos 4> 

fi JR2 + (s; - R)2 + 2R(s; - R) cos 4> 

Because Equation J is cumbersome to work with, Gauss, in ] 841, simplified it by using 
the linear approximation cos 4> "'" 1 for small values of 4>. (This amounts to using the 
Taylor polynomial of degree 1.) Then Equation] becomes the following simpler equation 
[as you are asked to show in Exercise 34(a)]: 

+~= 
So Sj R 

The resulting optical theory is known as Gaussian optics, or first-order optics, and has 
become the basic theoretical tool used to design lenses. 

A more accurate theory is obtained by approximating cos 4> by its Taylor polynomial of 
degree 3 (which is the same as the Taylor polynomial of degree 2), This takes into account 
rays for which 4> is not so small, that is, rays that strike the surface at greater distances h 
above the axis. In Exercise 34(b) you are asked to use this approximation to derive the 
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more accurate equation 

nl n2 n2 - nl 2[ nl (1 1)2 n2 (1 1)2]-+-= +h - -+- +- --­
So Sj R 2So So R 2si R Si 

The resulting optical theory is known as third-order optics. 
Other applications of Taylor polynomials to physics and engineering are explored' 

Exercises 32, 33, 35, 36, and 37 and in the Applied Project on page 757. 

EXERCISES 

~1~ I. (a) Find the Taylor polynomials up to degree 6 for 
f(x) = cos x centered at a = O. Graph f and these 
polynomials on a common screen. 

(b) Evaluate f and these polynomials at x = TT/4, TT/2, 
and TT. 

(c) 	Comment on how the Taylor polynomials converge 
to f(x). 

VN 	 2. (a) Find the Taylor polynomials up to degree 3 for 
f(x) = 1/x centered at a = 1. Graph f and these 
polynomials on a common screen. 

(b) Evaluate f and these polynomials at x = 0.9 and 1.3. 
(c) 	Comment on how the Taylor polynomials converge 

to f(x). 

{is ]-10 Find the Taylor polynomial T,,(x) for the function f at the 
number a. Graph f and T3 on the same screen. 

3.f(x) = 	l/x, a = 2 

4. f(x) = 	 x + e-" a = 0 

[S:U(x) = 	 cos x, a = TT/2 

6. f(x) = e-x sin x, a = 0 

7. 	 f(x) = arcsin x, a = 0 


lnx

8. 	 f(x) = -, a = 1 

x 


['9:] f(x) = xe -2" a = 0 


10. f(x) = 	 tan-Ix, a = 1 

[Qi~] 	 11-12 Use a computer algebra system to find the Taylor poly­
nomials T" centered at a for n = 2,3,4,5. Then graph these 
polynomials and f on the same screen. 

II. f(x) = cot x, a = TT/4 

12. f(x) =~, a = 0 

1]-22 
(a) Approximate f by a Taylor polynomial with degree n at the 

number a. 
(b) Use Taylor's Inequality to estimate the accuracy of the 

approximation f(x) = T,.(x) when x lies in the given 
interval. 

tEl (c) Check your result in part (b) by graphing IR,,(x) I. 
13. 	 f(x) =.fX, a = 4, n = 2, 4,;; x,;; 4.2 

14. 	 f(x) = [2, a = I, n = 2, 0.9';; x,;; 1.1 

x 2/315. 	 f(x) = , a = I, n = 3, 0.8';; x,;; 1.2 

16. f(x) = 	 sin x, a = TT/6, n = 4, 0,;; x ,;; TT/3 

17. f(x) = sec x, a = 0, II = 2, -0.2,;; x,;; 0.2 

It?,! f(x) = In(l + 2x), a = I, n = 3, 0.5,;; x ~ 1.5 

Ii?:.: f(x) = eX', a = 0, n = 3, 0,;; x ,;; 0.1 

20. f(x) = x In x, a = I, II = 3, 0.5,;; x ,;; 1.5 

2I.f(x)=xsinx, a=O, 11=4, -l';;x,;;1 

22. 	 f(x) = sinh 2x, a = 0, 11 = 5, -1,;; x ,;; 1 

23. Use the information from Exercise 5 to estimate cos 80° 
rect to five decimal places. 

24. Use the information from Exercise 16 to estimate sin 38° 
correct to five decimal places. 

I.~.?.,! 	 Use Taylor's Inequality to determine the number of terms 
the Maclaurin series for eX that should be used to estimate 
to within 0.00001. 

26. How many terms of the Maclaurin series for InO + x) do 
need to use to estimate In 1.4 to within 0.001? 

tf1 27-29 Use the Alternating Series Estimation Theorem or 
Taylor's Inequality to estimate the range of values of x for 
the given approximation is accurate to within the stated error. 
Check your answer graphically. 

27. sin x = x - -
xJ 

(I error I < 0.01)
6 

X4 

28. 	cos x = 1 - 2
x 2 

+ 24 (I error I< 0.005) 

J 5x x
29. 	arctan x = x - - + - (I error I < 0.05)

3 5 
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(-1)"n!
t n 

)(4) = 3"(n + 1) 

and the Taylor series of 1 centered at 4 converges to I(x) 
for all x in the interval of convergence. Show that the fifth­
degree Taylor polynomial approximates 1(5) with error less 
than 0.0002. 

Acar is moving with speed 20 m/s and acceleration 2 m/s2 

ata given instant. Using a second-degree Taylor polynomial, 
estimate how far the car moves in the next second. Would it 
be reasonable to use this polynomial to estimate the distance 
traveled during the next minute? 

The resistivity p of a conducting wire is the reciprocal of the 
conductivity and is measured in units of ohm-meters (a-m). 
The resistivity of a given metal depends on the temperature 
according to the equation 

p(t) = P20eu(I-20l 

where I is the temperature in °C. There are tables that list the 
values of a (called the temperature coefficient) and P20 (the 
resistivity at 20°C) for various metals. Except at very low 
temperatures, the resistivity varies almost linearly with tem­
perature and so it is common to approximate the expression 
for pet) by its first- or second-degree Taylor polynomial 
aU = 20. 
(a) Find expressions for these linear and quadratic 

approximations. 
(b) For copper, the tables give a = 0.OO39/"C and 

pm = 1.7 X 10-8 a-m. Graph the resistivity of copper 
and the linear and quadratic approximations for 
- 250°C ~ I ~ IOOO°e. 

(e) For what values of t does the linear approximation agree 
with the exponential expression to within one percent? 

An electric dipole consists of two electric charges of equal 
magnitude and opposite sign. If the Charges are q and -q and 
are located at a distance d from each other, then the electric 
field E at the point P in the figure is 

E=.!L---q
D2 (D + d)2 

By expanding this expression for E as a series in powers of 
diD, show that E is approximately proportional to I/D 3 

when P is far away from the dipole. 

q -q
p •.._.-_...__......__..­ ..__......... _ .. _ .. 

~----- D .j­ d 

34. (a) Derive Equation 3 for Gaussian optics from Equation I 
by approximating cos 4> in Equation 2 by its first-degree 
Taylor polynomial. 

(b) Show that if cos 4> is replaced by its third-degree Taylor 
polynomial in Equation 2, then Equation I becomes 

Equation 4 for third-order optics. [Hint: Use the first two 
terms in the binomial series for £0- 1 and £j-l. Also, use 
4> = sin 4>.] 

35. If a water wave with length L moves with velocity v across a 
body of water with depth d, as in the figure. then 

gL 27Td 
v2 = -tanh-­

27T L 

(a) If the water is deep. show that v = JgL/(27T). 
(b) If the water is shallow. use the Maclaurin series for tanh 

to show that v = Jiid. (Thus in shallow water the veloc­
ity of a wave tends to be independent of the length of the 
wave.) 

(c) Use the Alternating Series Estimation Theorem to show 
that if L > IOd, then the estimate v2 = gd is accurate to 
within 0.014gL. 

36. The period of a pendulum with length L that makes a maxi­
mum angle 80 with the vertical is 

T = 4 IL J'''/2 dx-V' 9 0 !.. • ~ • ~ 

where k = sinG 80 ) and 9 is the acceleration due to gravity. 
(In Exercise 40 in Section 7.7 we approximated this integral 
using Simpson's Rule.) 
(a) Expand the integrand as a binomial series and use the 

result of Exercise 46 in Section 7.1 to show that 

~ [ 
12 e3 2 123252 

]T= 27T - I + -k 2 + --k 4 + ---k 6 + ...
9 22 2242 224262 

If 80 is not too large, the approximation T"'" 27TJL/g, 
obtained by using only the first term in the series, is often 
used. A better approximation is obtained by using two 
terms: 

T "'" 27T~ (I + jk 2 
) 

(b) Notice that all the terms in the series after the first one 
have coefficients that are at most ±. Use this fact to com­
pare this series with a geometric series and show that 

~ ( I 2) ~ 4 - 3k 
2 

27T ...­ I +,jk ~ T ~ 27T -­ ---'--_ 
9 9 4­

(c) Use the inequalities in part (b) to estimate the period of a 
pendulum with L = I meter and 80 = 10". How does it 
compare with the estimate T = 27TJL/g? What if 
80 = 42°? 
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37. 	If a surveyor measures differences in elevation when making 38. Show that Tn and f have the same derivatives at a up to 
plans for a highway across a desert, corrections must be made order n. 
for the curvature of the earth. 

39. In Section 4.8 we considered Newton's method for approxi· . 
(a) If R is the radius of the earth and L is the length of the 

mating a root r of the equation f(x) = 0, and from an 
highway, show that the correction is 

initial approximation XI we obtained successive approxi· 
C = R sec(L/R) R mations X2, X), ••• , where 

(b) Use a Taylor polynomial to show that f(xlI) 
XIl+J XII

L2 5L4 	 !'(xn)

C""'-+
2R Use Taylor's Inequality with n = I, a = XII' and x r to 

(c) Compare the corrections given by the formulas in parts show that if f"(x) exists on an interval I containing r, l,. 
(a) and (b) for a highway that is 100 km long. (Take the and XII+h and If"(x) I "" M, I!'(x) I ;:;. K for all x E I, then 

radius of the earth to be 6370 km.) 

!XII+I 

[This means that if XII is accurate to d decimal places, then 
Xn+1 is accurate to about 2d decimal places. More precisely, 
if the error at stage n is at most 10-"', then the error at 
n + 1 is at most (M/2K)IO- 2m

.] 

RADIATION FROM THE STARS 
~~'~~_~'~~=~_~"_C""'W_~~_M',"W 

Any'~bj~ct wheriheated. A blackbody is asystem that absorbs all the 
that falls .?n it.For .... 'a~a(teblack surface or a large cavity with a small hole in its 
(likea1:ila~tfurnace) isa blackbudyal'ld emits blackbody radiation. Even the radiation from 
stmi~. to being blackbody·radHitlon. . 

'~$ed in the late 19th Rayleigh7Jeans 4tw..expresses the energy density 

lim !(,X) = 0 
A .... '" 

for Planck's Law. Soililii~w modei{bi~Jkbody radiation better than the I""·V''''~''-.'Ql'. 
Law for short wavelengths. 
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Use a Taylor polynomial to showthat,[or large wayetengths, Planck's Law gives approxi­
rluitely the same values as the Rayleigh-Jeans Law~ 

Graph f as given ljybofh lriwsonthe same screen and comment on the Similarities and 
differenees. User = 5700 K (the temperature bfthe SUn). (You may want to change from 
meters to the niore convet)jent unit. Ofmltrornetets;.l ,..,Ifi.· 6c. lO-~fil.) 

Problem :3 to estimate tM~al'Ue;o:rAfQr\Vtijthl("')isa maximum under . 
", ' ./-, ' ,'" -,-, , >';:/ 

Invesdgal.tthdw the graph orfchanges ~.rv~~~~:(usePlanek's taw.) Iriparticular. graph 
for the stat~ Betelgeuse (1',;;734;00 K).Pr~>:~n (T",,; 6400K). and Sirius (T -= 9200 K) 

as well as the sun. How does the total radiation emitted (the area under the clIrve) vary 
with T? Usc themaph to.comment onwhy SirjusisknOWfl as a blue star and Betelgeuse as 

comrT (HECK 

I. (a) What is a convergent sequence? 
(b) What is a convergent series? 
(c) What does limn~oo an = 3 mean? 
(d) What does 2:~=1 a" = 3 mean? 

2. (a) What is a bounded sequence? 
(b) What is a monotonic sequence? 

EW 

(c) What can you say about a bounded monotonic sequence? 

l. (a) What is a geometric series? Under what circumstances is 
it convergent? What is its sum? 

(b) What is a p-series? Under what circumstances is it 
convergent? 

4. Suppose 2: G1/ = 3 and s. is the nth partial sum of the series. 
What is limll~" a1/? What is limn~" s.? 

S. State the following. 
(a) The Test for Divergence 
(b) The Integral Test 
(c) The Comparison Test 
(d) The Limit Comparison Test 
(e) The Alternating Series Test 
(f) The Ratio Test 
(g) The Root Test 

6. (a) What is an absolutely convergent series? 
(b) What can you say about such a series? 

(b) If a series is convergent by the Comparison Test. how do 
you estimate its sum? 

(c) If a series is convergent by the Alternating Series Test. how 
do you estimate its sum? 

8. (a) Write the general form of a power series. 
(b) What is the radius of convergence of a power series? 
(c) What is the interval of convergence of a power series? 

9. Suppose /(x) is the sum of a power series with radius of con­
vergence R. 
(a) How do you differentiate /? What is the radius of conver­

gence of the series for /'? 
(b) How do you integrate /? What is the radius of convergence 

of the series for J/(x) dx? 

10. (a) Write an expression for the nth-degree Taylor polynomial 
of / centered at a. 

(b) Write an expression for the Taylor series of / centered at a. 
(c) Write an expression for the Maclaurin series of f 
(d) How do you show that /(x) is equal to the sum of its 

Taylor series? 
(e) State Taylor's Inequality. 

II. Write the Maclaurin series and the interval of convergence for 
each of the following functions. 
(a) J/(1 x) (b) eX (c) sin x 
(d) cos x (e) tan-Ix(c) What is a conditionally convergent series? 

7. 	 (a) If a series is convergent by the Integral Test, how do you 12. Write the binomial series expansion of (1 + X}k. What is the 
estimate its sum? radius of convergence of this series? 


