Problem 1 Perform computations and present the result as a complex number in the standard form a+bi.

$$\frac{(3+2i)(4-3i)}{(6+5i)(5-6i)}$$

Solution

$$\frac{(3+2i)(4-3i)}{(6+5i)(5-6i)} = \frac{12-9i+8i-6i^2}{30-36i+25i-30i^2}.$$

Recalling that $i^2=-1$ we see that the above expression is equal to $\frac{18-i}{60-11i}$.

Finally we perform the division

$$\frac{18-i}{60-11i} = \frac{(18-i)(60+11i)}{(60-11i)(60+11i)} = \frac{1091+138i}{60^2+11^2} = \frac{1091}{3721} + \frac{138}{3721}i.$$

Problem 2 Find all the solutions of the equation $x^6 - x^3 + 6 = 0$.

Solution The left part of the equation is a trinomial of quadratic type and it can be factored as

$$(x^3-3)(x^3+2)$$

Therefore we have to solve two equations of degree 3 $x^3=3$ and $x^3=-2$. Recall that all the solutions of the equation $x^3=a$ where a is a real number can be obtained by multiplying all the solutions of the equation $x^3=1$ by $\sqrt[3]{a}$.

As we discussed in class the solutions of the last equation are

1,
$$\frac{-1+\sqrt{3}i}{2}$$
, $\frac{-1-\sqrt{3}i}{2}$.

Therefore all six solutions of our original equation can be obtained as

$$x_1 = \sqrt[3]{3}, \quad x_2 = \sqrt[3]{3} \frac{-1 + \sqrt{3}i}{2}, \quad x_3 = \sqrt[3]{3} \frac{-1 - \sqrt{3}i}{2},$$
$$x_4 = -\sqrt[3]{2}, \quad x_5 = -\sqrt[3]{2} \frac{-1 + \sqrt{3}i}{2}, \quad x_6 = -\sqrt[3]{2} \frac{-1 - \sqrt{3}i}{2}.$$

Problem 3 Solve the radical equation $\sqrt{x} + \sqrt{x+1} = \sqrt{x+2}$.

Solution. Squaring both parts of the equation we get

$$x + 2\sqrt{x(x+1)} + x + 1 = x + 2$$
.

Or equivalently

$$2\sqrt{x(x+1)} = 1 - x.$$

Squaring both parts again we obtain

$$4x(x+1) = x^2 - 2x + 1,$$

which is equivalent to the quadratic equation

$$3x^2 + 6x - 1 = 0$$

By quadratic formula

$$x = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 3 \cdot (-1)}}{2 \cdot 3} = \frac{-6 \pm \sqrt{48}}{6} = -1 \pm \frac{2\sqrt{3}}{3}$$
. Clearly, the

negative value of x is not a solution of the original equation, but the positive value is (e.g. we can use our calculators to see that $-1+(2/3)\sqrt{3}\approx 0.1547$ and that $\sqrt{0.1547}+\sqrt{1.1547}\approx \sqrt{2.1547}$). Finally

$$x = -1 + \frac{2\sqrt{3}}{3}.$$

Problem 4 Using your calculator and the method of halving the interval locate the positive solution of the equation $x^3 + x^2 - 1 = 0$ with accuracy 0.01.

Solution Let $f(x) = x^3 + x^2 - 1$. Then f(0) = -1 < 0 and f(1) = 1 > 0. Therefore the solution is in the interval [0,1]. The successive steps are shown in the table below.

Interval	Midpoint	Sign of the value of f at the midpoint
[0, 1]	1/2	-
[1/2, 1]	3/4	-
[3/4, 1]	7/8	+
[3/4, 7/8]	13/16	+
[3/4, 13/16]	25/32	+
[3/4, 25/32]	49/64	+
[3/4, 49/64]	97/128	+
[3/4, 97/128]		

The length of the last interval is 1/128 < 0.01. We have located the positive solution of our equation in the interval

$$3/4,97/128 = [0.75,0.7578125]$$

Problem 5 Using the rational roots test, the factor theorem, and the synthetic division find all the solutions of the polynomial equation and factor the polynomial completely.

$$6x^4 - x^3 - 5x^2 + 11x - 6 = 0$$

Solution. By the rational roots test if there are rational solutions of the equation above then their numerators can be only the numbers $\pm 1, \pm 2, \pm 3, \pm 6$, and their denominators can be only from the list 1, 2, 3, 4, 6. Therefore the list of all possible rational roots is

$$\pm 1, \pm 2, \pm 3, \pm 6, \pm 1/2, \pm 3/2, \pm 1/3, \pm 2/3, \pm 1/4, \pm 3/4, \pm 1/6.$$

Plugging in the numbers from the list into the original equation (either by using the synthetic division or a calculator) we successively eliminate the numbers $\pm 1, \pm 2, \pm 3, \pm 6, \pm 1/2, 3/2$. But -3/2 is a solution of the original equation. Indeed the synthetic division goes as follows

-3/2	6	-1	-5	11	-6
		-9	15	-15	6
	6	-10	10	-4	0

whence -3/2 is indeed a root of the original equation and

$$6x^4 - x^3 - 5x^2 + 11x - 6 =$$

$$= (x+3/2)(6x^3 - 10x^2 + 10x - 4) = (2x+3)(3x^3 - 5x^2 + 5x - 2)$$

We have reduced the problem to solving the cubic equation

$$3x^3 - 5x^2 + 5x - 2 = 0$$
.

The list of possible rational roots for this equation is much shorter : $\pm 1/3$, $\pm 2/3$. We easily eliminate $\pm 1/3$ but when we come to 2/3 we hit another root.

2/3	3	-5	5	-2
		2	-2	2
	3	-3	3	0

Therefore

$$3x^3 - 5x^2 + 5x - 2 = (x - 2/3)(3x^2 - 3x + 3) =$$
$$= (3x - 2)(x^2 - x + 1).$$

It remains to solve the quadratic equation $x^2 - x + 1 = 0$. By the quadratic

formula
$$x=\frac{-(-1)\pm\sqrt{(-1)^2-4\cdot1\cdot1}}{2\cdot1}=\frac{1\pm\sqrt{3}i}{2}$$
. Finally, the complete list

of solutions of the original equation is

$$-\frac{3}{2}, \frac{2}{3}, \frac{1+\sqrt{3}i}{2}, \frac{1-\sqrt{3}i}{2}$$

The polynomial can be factored as

$$6x^4 - x^3 - 5x^2 + 11x - 6 = (3x + 2)(2x - 3)\left(x - \frac{1 + \sqrt{3}i}{2}\right)\left(x - \frac{1 - \sqrt{3}i}{2}\right)$$