MULTIPLE CHOICE. Choose th	e one alternative that best	completes the statemer	nt or answers the questic	on.
Find the minimum sample size y error around the population p.	ou should use to assure th	nat your estimate of p w	ill be within the require	d margin of
	confidence level: 93%; p a	nd g unknown		1)
A) 410	B) 409	C) 204,757	D) 204,756	·/
2) Margin of error: 0.07; c	onfidence level: 90%; from	 n a prior study, p is estim	nated by 0.19.	2)
A) 75	B) 85	C) 255	D) 6	
Use the given degree of confiden	ce and sample data to con	struct a confidence inte	rval for the population p	proportion p.
3) Of 346 items tested, 12 a proportion of all such it	are found to be defective. C ems that are defective.	Construct the 98% confid	ence interval for the	3)
A) 0.0345 < p < 0.034		B) 0.0154 < p < 0.054	40	
C) 0.0118 < p < 0.0576		D) 0.0110 < p < 0.0584		
Use the confidence level and sam				
	light bulbs had a mean life			4)
σ = 28 hours. Construct this type.	a 90 percent confidence in	terval for the mean life, p	u, of all light bulbs of	
A) 393 < µ < 407	B) 394 < µ < 406	C) 395 < µ < 405	D) 392 < µ < 408	
Use the margin of error, confider	nce level, and standard de	viation $oldsymbol{\sigma}$ to find the mir	nimum sample size requ	uired to
estimate an unknown populatior	•			
	onfidence level: 95%, σ = \$			5)
A) 4	B) 64	C) 2	D) 74	
Use the given degree of confiden		struct a confidence inte	rval for the population r	mean µ.
Assume that the population has a 6) A laboratory tested twe		d that the mean amount	of chalastaral was 102	۷)
milligrams with s = 15.4	l milligrams. Construct a 9			6)
cholesterol content of a	II such eggs.	D) 102 2 202 0		
A) 185.0 < μ < 201.0 C) 183.1 < μ < 202.9		B) 183.2 < µ < 202.8 D) 183.3 < µ < 202.7		
Find the appropriate minimum s	ample size			
	nfident that the sample var	iance is within 30% of th	e population variance.	7)
A) 346	B) 723	C) 97	D) 130	, <u> </u>
Use the given degree of confiden	ce and sample data to find	d a confidence interval f	for the population stand	ard deviation
σ . Assume that the population ha				
8) The amounts (in ounces 15.7 15.6 15.3 15.3	s) of juice in eight randoml	y selected juice bottles ar	re:	8)
15.7 15.6 15.3 15.3				
	dence interval for the popu	lation standard deviation	1 σ.	
A) (0.17, 0.66)				

Solutions

Problem 1

We use formula 7-3 on page 328

$$n = \frac{[z_{\alpha/2}]^2 \cdot 0.25}{F^2}.$$

In our case E=0.002, $\alpha=1-0.93=0.07$, $\alpha/2=0.035$. From Table A-2 we find $z_{0.035}=1.81$

Plugging in the numbers into the formula above and rounding to the nearesr larger integer we get n = 204757. The correct answer is "C".

Problem 2

We use formula 7-2 on page 328

$$n = \frac{[z_{\alpha/2}]^2 \, \hat{p} (1 - \hat{p})}{E^2}.$$

In this problem

$$E = 0.07$$
, $\hat{p} = 0.19$, $1 - \hat{p} = 0.81$, $\alpha = 0.10$, $z_{\alpha/2} = z_{0.05} = 1.645$.

Therefore n = 85. The correct answer is "B".

Problem 3

We use the formula on page 326 for the confidence interval

$$\hat{p} - E where $E = z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$.$$

Into this formula we plug in the numbers

$$\hat{p} = \frac{12}{346} \approx 0.0347, \quad 1 - \hat{p} \approx 0.9653, \quad n = 346,$$

$$z_{\alpha/2} = z_{0.01} = 2.33,$$

and compute $E \approx 0.0229$, whence the confidence interval is

$$0.0118 .$$

The correct answer is "C".

Problem 4

We use the formula from Page 340 for the confidence interval for the population mean

$$\overline{x} - E < \mu < \overline{x} + E$$
, where $E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$.

Plugging in the numbers

$$n = 79$$
, $\overline{x} = 400$, $\sigma = 28$, $z_{\alpha/2} = z_{0.05} = 1.645$

we find that $E = 1.645 \cdot \frac{28}{\sqrt{79}} \approx 5.18$. Rounding to the nearest larger integer we take

E=6 whence the confidence interval is $394 < \overline{x} < 406$. The correct answer is "B".

Problem 5

We use formula 7-5 on page 343

$$n = \left\lceil \frac{z_{\alpha/2}\sigma}{E} \right\rceil^2$$

where E = 121, $\sigma = 528$, $z_{\alpha/2} = z_{0.025} = 1.96$. Therefore

$$n = \left\lceil \frac{1.96 \cdot 528}{121} \right\rceil^2 \approx 73.15.$$

Rounding upward we get n = 74. The correct answer is "D".

Problem 6

We use formula on page 351

$$\overline{x} - E < \mu < \overline{x} + E$$
, where $E = t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$

and t is the Student distribution with n-1 degrees of freedom. In our case n = 12 and the number of degrees of freedom is 11. From Table A-3 on age 774 we find

$$t_{0.025} = 2.201$$
 whence $E = 2.201 \cdot \frac{15.4}{\sqrt{12}} \approx 9.8$ and the confidence interval is

$$183.2 < \mu < 202.8$$
.

The correct answer is "B".

Problem 7

From Table 7-2 on page 371 we find that the sample size should be 97. The correct answer is "C".

Problem 8

We use the formula on page 367

$$\sqrt{\frac{(n-1)s^2}{\chi_R^2}} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi_L^2}}.$$

From formula 3-5 on page 94 we see that

$$(n-1)s^2 = \sum x^2 - (\sum x)^2 / n = 1900.65 - 123.3^2 / 8 = 0.28875$$
.

Looking at Table A-4 and noticing that the number of degrees of freedom is 7, area to the right of χ_L^2 is 0.99, and area to the right of χ_R^2 is 0.01, we see that $\chi_L^2 = 1.239$ and $\chi_R^2 = 18.475$. Therefore the confidence interval is

$$\sqrt{\frac{0.28875}{18.475}} < \sigma < \sqrt{\frac{0.28875}{1.239}}$$
.

Or after rounding the left bound downward and the right one upward we obtain $0.12 < \sigma < 0.49$.

The closest answer to the one we got is "D".