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Problem 1. Consider the function
2

2cos
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(a) Find the amplitude, the period, and the shift. 

(b) Graph the function. 

Solution. (a) We identify the coefficients in this expression as  
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Next we compute the amplitude| | 2a  , the period
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  .  The graph of the function is shown below. 

 



Problem 2 (a) Find the standard restricted domain over which the function y

from Problem 1 is one-to-one. 

(b) Find the inverse function to this restriction of y . 

(c) Graph the function y  with the restricted domain and the inverse function in 

the same coordinate system. 

Solution (a) the standard interval where the function cos x is one-to-one is

[0, ] . Respectively for the function y we have to consider the interval 
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(b) We consider the interval above and solve the equation 
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Therefore the inverse function is defined as 
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(C) The graphs of y and
1y

are shown below. 

 

 

 

 

  



Problem 3 Consider the function
1

tan
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(a) Find the period and the shift. 

(b) Graph the function. 

Solution (a) the period is (1/ 3) 3   , the shift is 6 1 3 2   . 

(b) The graph is shown below 

 

  



Problem 4(a) Find the standard restricted domain over which the function y

from Problem 1 is one-to-one. 

(b) Find the inverse function to this restriction of y . 

(c) Graph the function y  with the restricted domain and the inverse function in 

the same coordinate system. 

(a) The standard interval where tan x is one-to-one is 2, 2  . 

Respectively for y we have
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(b) Over this restricted domain we have
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(c) The graphs are shown below. 

 



Problem 5 (a) Find the exact value (no calculators!) ofcsc(arctan( 7 5)) . 

(b) Rewrite tan(arcsin( ))x as an equivalent algebraic expression. 

Solution (a) First notices that because the functions cscandarctan are both 

odd functions we have

csc(arctan( 7 5)) csc( arctan(7 5)) csc(arctan(7 5))     . 

To find the value of csc(arctan(7 5))consider the right triangle with an acute 

angle , opposite side7 , and adjacent side5 . Then 
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to part (a) is 7 74 . 

(b) Consider the right triangle with an acute angle , opposite side x , and 

hypotenuse1.  Then 
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