Problem 1. Consider the function \(y = -2 \cos \left(\frac{2\pi}{3} x + \frac{\pi}{3} \right) \).

(a) Find the amplitude, the period, and the shift.

(b) Graph the function.

Solution. (a) We identify the coefficients in this expression as

\[a = -2, \quad b = \frac{2\pi}{3}, \quad c = -\frac{\pi}{3}. \]

Next we compute the amplitude \(|a| = 2 \), the period \(\frac{2\pi}{b} = 3 \), and the shift

\[\frac{c}{b} = -\frac{1}{2}. \]

The graph of the function is shown below.
Problem 2 (a) Find the standard restricted domain over which the function \(y \) from Problem 1 is one-to-one.

(b) Find the inverse function to this restriction of \(y \).

(c) Graph the function \(y \) with the restricted domain and the inverse function in the same coordinate system.

Solution (a) the standard interval where the function \(\cos x \) is one-to-one is \([0, \pi]\). Respectively for the function \(y \) we have to consider the interval

\[
0 \leq \frac{2\pi}{3} x + \frac{\pi}{3} \leq \pi
\]

Whence

\[
-\frac{\pi}{3} \leq \frac{2\pi}{3} x \leq \frac{2\pi}{3}, \quad \text{and}
\]

\[
-\frac{1}{2} \leq x \leq 1
\]

(b) We consider the interval above and solve the equation

\[
y = -2 \cos \left(\frac{2\pi}{3} x + \frac{\pi}{3} \right)
\]

for \(x \).

\[
-\frac{y}{2} = \cos \left(\frac{2\pi}{3} x + \frac{\pi}{3} \right),
\]

\[
\frac{2\pi}{3} x + \frac{\pi}{3} = \arccos \left(-\frac{y}{2} \right),
\]

\[
x = \frac{3}{2\pi} \arccos \left(-\frac{y}{2} \right) - \frac{1}{2}.
\]
Therefore the inverse function is defined as

\[y^{-1}(x) = \frac{3}{2\pi} \arccos\left(-\frac{x}{2}\right) - \frac{1}{2}. \]

(C) The graphs of \(y \) and \(y^{-1} \) are shown below.
Problem 3 Consider the function $y = \tan\left(\frac{1}{3}x - \frac{\pi}{6}\right)$.

(a) Find the period and the shift.

(b) Graph the function.

Solution (a) the period is $\pi \div (1/3) = 3\pi$, the shift is $\pi/6 \div 1/3 = \pi/2$.

(b) The graph is shown below
Problem 4

(a) Find the standard restricted domain over which the function y from Problem 1 is one-to-one.

(b) Find the inverse function to this restriction of y.

(c) Graph the function y with the restricted domain and the inverse function in the same coordinate system.

(a) The standard interval where $\tan x$ is one-to-one is $\left(-\pi/2, \pi/2\right)$.

Respectively for y we have $-\frac{\pi}{2} < \frac{x}{3} - \frac{\pi}{6} < \frac{\pi}{2}$, whence $-\pi < x < 2\pi$.

(b) Over this restricted domain we have $\frac{1}{3} x - \frac{\pi}{6} = \arctan y$, whence $x = 3 \arctan y + \pi/2$, and

$$y^{-1}(x) = 3 \arctan x + \pi/2.$$

(c) The graphs are shown below.
Problem 5 (a) Find the exact value (no calculators!) of $\csc(\arctan(-7/5))$.

(b) Rewrite $\tan(\arcsin(\sqrt{x}))$ as an equivalent algebraic expression.

Solution (a) First notices that because the functions \csc and \arctan are both odd functions we have

$$\csc(\arctan(-7/5)) = -\csc(\arctan(7/5)) = -\csc(\arctan(7/5)).$$

To find the value of $\csc(\arctan(7/5))$ consider the right triangle with an acute angle θ, opposite side 7, and adjacent side 5. Then

$$\csc(\arctan(7/5)) = \csc \theta = 7/\sqrt{5^2 + 7^2} = 7/\sqrt{74},$$

whence the answer to part (a) is $-7/\sqrt{74}$.

(b) Consider the right triangle with an acute angle θ, opposite side \sqrt{x}, and hypotenuse 1. Then

$$\tan(\arcsin(\sqrt{x})) = \tan \theta = \frac{\sqrt{x}}{\sqrt{1-(\sqrt{x})^2}} = \frac{\sqrt{x}}{\sqrt{1-x}} = \frac{x}{\sqrt{1-x}}.$$