Finite Mathematics

Review 2

- 1. For the numbers 360 and 1035 find
 - a. Prime factorizations.

Using these prime factorizations find next

- b. The greatest common factor.
- c. The least common multiple.

Solution. a.

 $360 = 2 \times 180 = 2 \times 2 \times 90 = 2 \times 2 \times 2 \times 45 = 2 \times 2 \times 2 \times 3 \times 3 \times 5;$ $1035 = 3 \times 345 = 3 \times 3 \times 115 = 3 \times 3 \times 5 \times 23.$

The prime factorizations are $360 = 2^3 \times 3^2 \times 5$ and $1035 = 3^2 \times 5 \times 23$.

b. To find the greatest common factor we take each prime factor from factorizations of 360 and 1035 with the smaller of two exponents. Thus $GCF(360,1035) = 3^2 \times 5 = 45$.

c. To find the least common multiple we take each prime factor from factorizations of 360 and 1035 with the larger of two exponents. Thus *LCM* (360,1035) = $2^3 \times 3^2 \times 5 \times 23 = 8280$.

2. Find the greatest common factor of the numbers 3464 and 5084 using the Euclidean algorithm.

Dividend	Divisor	Quotient	Remainder
5084	3464	1	1620
3464	1620	2	224

Solution. The following table shows the sequence of operations.

1620	224	7	52
224	52	4	16
52	16	3	4
16	4	4	0

Thus the greatest common factor of 5084 and 3464 is 4.

3. Determine which one of the two infinite decimal fractions

0.12123123412345...

and

0.473121121121....

represents a rational number.

Find the irreducible fraction which corresponds to this rational number.

Solution. The first infinite decimal though has a pattern but it is not a periodic pattern, no group of digits repeats in this pattern. Thus this infinite decimal represents an irrational number.

In the second decimal we have a repeating group of digits -121 and therefore this decimal represents a rational number.

To find the fraction corresponding to the second decimal we will denote this decimal by *x* and we will move the decimal point three positions to the right, to the beginning of the first period 1000x = 473.121121121... Then we will move the decimal point six positions to the right – to the end of the first period 100000x = 473121.121121... Now we have 1000000x = 473121-473 = 472648

whence $x = \frac{472648}{999000}$. It remains to write this fraction in the lowest terms. Clearly we can reduce it by $4, x = \frac{118162}{249750}$. This fraction we still can reduce by $2, x = \frac{59081}{124875}$. We do not see at once a simple way to reduce the last fraction so we will use the Euclidean algorithm to find whether its numerator and denominator have a common factor greater than 1. Let us again organize our calculations in the form of a table.

Dividend	Divisor	Quotient	Remainder
124875	59081	2	6713
59081	6713	8	5377
6723	5377	1	1346
5377	1346	3	1339
1346	1339	1	7
1339	7	191	2
7	2	3	1

Therefore the Greatest Common Factor of 124875 and 59081 is 1 and our last fraction is irreducible, $x = \frac{59081}{124875}$.

The next problem is similar to the extra credit problem on the test.

4. Consider the following operation ("arithmetic mean") on the set of all real numbers.

$$a * b = \frac{a+b}{2}$$

(a) Is operation (*) commutative? In other words, is it true that

$$a * b = b * a?$$

Solution. The answer to this question is positive. Indeed, because a+b=b+a we have

$$a * b = \frac{a+b}{2} = \frac{b+a}{2} = b * a.$$

(b) Is operation (*) associative? In other words, is it true that

$$a*(b*c) = (a*b)*c?$$

Solution. In this case the answer is negative. Let us look separately at the left and at the right part of the alleged identity above in more details.

$$a*(b*c) = \frac{a+\frac{b+c}{2}}{2} = \frac{2a+b+c}{4}.$$

Above we have multiplied both the numerator and the denominator of the complex fraction by 2.

On the other hand

$$(a*b)*c = \frac{\frac{a+b}{2}+c}{2} = \frac{a+b+2c}{4}.$$

Clearly, in general $2a + b + c \neq a + b + 2c$; take for example a = 1, b = 2, and c = 3. Therefore the operation (*) is not associative.