Final (Version 3)

Name......Score.....Score....

Show all work

(1) Find an equation of the line through (1, -1, 2) and intersects the line

$$\begin{cases} x = t - 3 \\ y = t - 6 \\ z = -t + 8 \end{cases}$$
 at a right angle. (10)

(2) Find the limits. (10)

(a).
$$\lim_{(x,y)\to(0,0)} \frac{3xy}{\sqrt{x^2+4y^2}};$$

(b). $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^4+2y^2}.$

(3) Find the partial derivatives of z with respect to x, and y respectively: (10)

(a).
$$z = e^s \sin t$$
, where $s = xy, t = \sqrt{x^2 + y^2}$;

(b).
$$\ln(y + xz) = 2 - xy^2z^2$$
.

(4) The temperature T at a point (x, y) on a semi-circular plate is given by $T(x, y) = 3x^2y - y^3 + 273$. (10)

(a). Find the temperature at (1, 2);

(b). Find the rate of change of temperature at (1,2) in the direction of $\overrightarrow{a} = \overrightarrow{i} - 2\overrightarrow{j}$;

(c). Find a unit vector in the direction in which the temperature increases most rapidly at (1,2) and find this maximum rate of change.

(5) Consider the surface $z = x^3 - 9xy + y^3$.(10)

(a). Find all the critical points on this surface;

(b). At each of the critical points determine if a relative maximum, relative minimum or saddle point occurs.

(6) Consider the double integral $\int_0^\pi \int_y^\pi \frac{\sin x}{x} dx dy$. (10)

(a). Sketch the region of integration;

(b). Evaluate the integral.

(7) Evaluate the integral by changing it to the cylindrical coordinates:

$$\int_0^3 \int_0^{\sqrt{9-x^2}} \int_{\sqrt{x^2+y^2}}^3 \sqrt{x^2+y^2} dz dy dx.$$
 (10)

(8) Find the work down by the force field $\overrightarrow{F}(x,y) = y^3 \overrightarrow{i} - x^3 \overrightarrow{j}$ on a particle that moves along the boundary of the region

$$R = \{(x, y) : 1 \le x^2 + y^2 \le 9\}, \text{ and } x \ge 0.$$
 (10)

(9) Use the Divergence theorem to find the flux of \overrightarrow{F} across σ : $\iint_{\sigma} \overrightarrow{F} \cdot \overrightarrow{n} ds$, where \overrightarrow{n} is the outer unit normal vector to σ ,

$$\overrightarrow{F}(x,y,z) = (xy^2)\overrightarrow{i} + (x\sin z)\overrightarrow{j} + (x^2z)\overrightarrow{k}$$
, and σ is the surface of the solid bounded above by $z = 4 - x^2 - y^2$ and below by $z = 0$. (10)

(10) Use Stokes' theorem to find the work down by the force field

$$\overrightarrow{F}(x,y,z) = (2y - \ln x)\overrightarrow{i} + (z + \sin y)\overrightarrow{j} + x\overrightarrow{k}$$
, in moving an object along an arch of the curve $\overrightarrow{r}(t) = (\cos t)\overrightarrow{i} + (\sin t)\overrightarrow{j} + (\sin 2t)\overrightarrow{k}$, $0 \le t \le 2\pi$. (10)

1