Final (Version 1)

Name......Score.....Score...

Show all work

(1) Find an equation of the line through (1, -1, 2) and intersects the line $\begin{cases} y = t - 6 & \text{at a right angle. (10)} \\ z = -t + 8 \end{cases}$

(2) Find the unit tangent vector \overrightarrow{T} and the unit normal vector \overrightarrow{N} for $\overrightarrow{r}(t) = (e^t \sin t) \overrightarrow{i} - (e^t \cos t) \overrightarrow{j} + e^t \overrightarrow{k} \text{ at } t = 0.$ (10)

(3) Solve the partial differential equation: 2 \$\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 0\$, using the indicated change of variables: \$u = x + y, v = x + 2y\$. (10)
(4) Let \$f(x,y) = \tan^{-1} \frac{y}{x}\$, (10)

- (a). find df(x, y);
- (b). find $\nabla f(x,y)$ at (-1,2);
- (c). find $D_{\overrightarrow{a}}f$ at p, where p=(1,-1), and $\overrightarrow{a}=3\overrightarrow{i}+4\overrightarrow{j}$;

(5) Use Lagrange multipliers to find the Maximum and minimum values of f(x, y, z) = 2xy + 2yz + xz subject to constraint xyz = 4.(10)

(6) Evaluate the integral by changing it to the polar coordinates: $\int \int_D \frac{dxdy}{(x^2+y^2)^2}$, where $D = \{(x,y) : y \le x^2 + y^2 \le 1\}$. (10)

(7) Without changing the integrand express the integral as an equivalent one in which the order of integral is reversed (i.e. dxdydz):

 $\int_{0}^{1} \int_{0}^{2-2x} \int_{0}^{3-3x-\frac{3y}{2}} f(x,y,z) dz dy dx.$ (10)

(8) Evaluate the integral $\int_C y^3 dx - x^3 dy$, where C is the boundary of the region $R = \{(x,y): 1 \le x^2 + y^2 \le 9, \text{ and } x \ge 0\}$ with a counterclockwise orientation. (10)

(9) Use the Divergence theorem to evaluate $\iint_{\sigma} \overrightarrow{F} \cdot \overrightarrow{n} ds$, where \overrightarrow{n} is the outer unit normal vector to σ , $\overrightarrow{F}(x,y,z) = (x^2y)\overrightarrow{i} + (xz)\overrightarrow{j} + (xyz)\overrightarrow{k}$, and σ is the surface of the solid bounded above by z=9 and below by $z = x^2 + y^2$. (10)

(10) Use Stokes' theorem to estimate the integral $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$, where $\overrightarrow{F}(x,y,z) = (2y)\overrightarrow{i} + z\overrightarrow{j} + (4x)\overrightarrow{k}$, C is the triangle with vertices (3,0,0),(0,3,3),(0,0,0) with a counterclockwise orientation looking down the positive z-axis. (10)