
Calculus 2 172    Review 2 
 
Consider the region between curves cosh , sinh , 0, 1y x y x x x= = = = . 
 
1. Find the area of the region. 
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Therefore the area is given by the integral 
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2. Find the volume of the solid of revolution when the region is revolved about the x-axis. 
 
Solution. We will compute the volume using the washers’ method and the 
identity 2 2cosh sinh 1x x− = . 
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3. Find the volume of the solid of revolution when the region is revolved about the y-axis. 
 
Solution. We will use the cylindrical shells’ method. 
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The last integral we have already computed in Problem 1 and therefore 
1 1 22 2 2 1.6y

e eV
e e e

π π π− −
= − + = ≈ 6  

 
4. Find the coordinates of the geometric center of the region. 
 
Solution. By the Pappus’s Centroid Theorem we have  
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5. Find the area of the surface of revolution when the region is revolved about the x-axis. 
 
 
Solution. The area in question consists of four parts. 
(a) The area of the surface generated by the rotation of the segment of the y-axis from 
      0 to 1about the x-axis. This surface is a disk with the radius 1 and its area is equal 
toπ .  
(b) The area of the surface generated by the rotation of the segment of the vertical line  
      1x =  from sin  about the x-axis. This surface is an annulus with the radii 

 and its area is equal to
h1 to cosh1

sinh1 and cosh1 2 2(cosh 1 sinh 1)π π− = . 
(c) The area of the surface generated by the rotation of the curve coshy x= about the x-
axis. This area is given by the formula 
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(d) The area of the surface generated by the rotation of the curve sinhy = about the 
      x-axis. This area is given by the formula 
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Adding all four areas from (a) – (d) we get that the surface area in question is 
approximately 20.65 
 
 
6. Find the area of the surface of revolution when the parametric curve 

cosh , sinh , 0 1x t y t t= = ≤ ≤ , is revolved about the x-axis and about the y-axis. 
Solution. (a) To find the surface area in case when the curve is revolved about the x-axis 
we use the formula 
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Taking we have andcoshu = sinhdu tdt=
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(b) If the curve is revolved about the y-axis we 
have
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 Taking we have andsinhu = coshdu tdt=
sinh1
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7. Find the arc length of the curve 3 , 0 1.xy x= ≤ ≤  
 
Solution. According to the formula for arc length we have 
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