Calculus 2 172

Review 2

Consider the region between curves $y = \cosh x$, $y = \sinh x$, x = 0, x = 1.

1. Find the area of the region.

Solution. Recall that $\cosh x = \frac{e^x + e^{-x}}{2}$ and $\sinh x = \frac{e^x - e^{-x}}{2}$, whence $\sinh x \le \cosh x$.

Therefore the area is given by the integral

$$A = \int_{0}^{1} (\cosh x - \sinh x) dx = (\sinh x - \cosh x)\Big|_{0}^{1} = \sinh 1 - \cosh 1 - \sinh 0 + \cosh 0 =$$

$$= \frac{e - e^{-1}}{2} - \frac{e + e^{-1}}{2} - 0 + 1 = 1 - \frac{1}{e} = \frac{e - 1}{e} \approx 0.63.$$

2. Find the volume of the solid of revolution when the region is revolved about the *x*-axis.

Solution. We will compute the volume using the washers' method and the identity $\cosh^2 x - \sinh^2 x = 1$.

$$V_{x} = \pi \int_{0}^{1} (\cosh^{2} x - \sinh^{2} x) dx = \pi \int_{0}^{1} 1 dx = \pi.$$

3. Find the volume of the solid of revolution when the region is revolved about the y-axis.

Solution. We will use the cylindrical shells' method.

$$V = 2\pi \int_{0}^{1} x(\cosh x - \sinh x) dx$$
. We will integrate by parts taking $u = x$

and $dv = (\cosh x - \sinh x)dx$. Then du = dx and $v = \sinh x - \cosh x$ whence

$$V = 2\pi x (\sinh x - \cosh x) \Big|_{0}^{1} - 2\pi \int_{0}^{1} (\sinh x - \cosh x) dx =$$

$$= 2\pi(\sinh 1 - \cosh 1) + 2\pi \int_{0}^{1} (\cosh x - \sinh x) dx.$$

The last integral we have already computed in Problem 1 and therefore

$$V_{y} = -2\pi \frac{1}{e} + 2\pi \frac{e-1}{e} = 2\pi \frac{e-2}{e} \approx 1.66$$

4. Find the coordinates of the geometric center of the region.

Solution. By the Pappus's Centroid Theorem we have

$$x_c = \frac{V_y}{2\pi A} = \frac{e-2}{e-1} \approx 0.42$$
, and

$$y_c = \frac{V_x}{2\pi A} = \frac{e}{2(e-1)} \approx 0.80.$$

5. Find the area of the surface of revolution when the region is revolved about the *x*-axis.

Solution. The area in question consists of four parts.

- (a) The area of the surface generated by the rotation of the segment of the y-axis from 0 to 1 about the x-axis. This surface is a disk with the radius 1 and its area is equal to π .
- (b) The area of the surface generated by the rotation of the segment of the vertical line x=1 from $\sinh 1$ to $\cosh 1$ about the *x*-axis. This surface is an annulus with the radii $\sinh 1$ and $\cosh 1$ and its area is equal to $\pi(\cosh^2 1 \sinh^2 1) = \pi$.
- (c) The area of the surface generated by the rotation of the curve $y = \cosh x$ about the x-axis. This area is given by the formula

$$S_{1} = 2\pi \int_{0}^{1} y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = 2\pi \int_{0}^{1} \cosh x \sqrt{1 + \sinh^{2} x} dx =$$

$$= 2\pi \int_{0}^{1} \cosh x \sqrt{\cosh^{2} x} dx = 2\pi \int_{0}^{1} \cosh^{2} x dx = \pi \int_{0}^{1} (\cosh 2x + 1) dx =$$

$$= \frac{\pi}{2} \sinh 2x \Big|_{0}^{1} + \pi = \pi \left(\frac{e^{2} - e^{-2}}{4} + 1\right) = \pi \frac{e^{4} + 4e^{2} - 1}{4e^{2}}.$$

(d) The area of the surface generated by the rotation of the curve $y = \sinh x$ about the x-axis. This area is given by the formula

$$S_2 = 2\pi \int_0^1 \sinh x \sqrt{1 + \cosh^2 x} dx$$
. Let $u = \cosh x$, then $du = \sinh x dx$ and therefore

$$\begin{split} S_2 &= 2\pi \int\limits_{1}^{\cosh 1} \sqrt{1 + u^2} \, du \stackrel{formula \, 21}{=} 2\pi \left(\frac{u}{2} \sqrt{1 + u^2} + \frac{1}{2} \ln(u + \sqrt{1 + u^2}) \right)_{1}^{\cosh 1} = \\ &= \pi \Big[\cosh 1 \sqrt{1 + \cosh^2 1} - \sqrt{2} - \ln(1 + \sqrt{2}) + \ln(\cosh 1 + \sqrt{1 + \cosh^2 1}) \Big]. \end{split}$$

Adding all four areas from (a) - (d) we get that the surface area in question is approximately 20.65

6. Find the area of the surface of revolution when the parametric curve $x = \cosh t$, $y = \sinh t$, $0 \le t \le 1$, is revolved about the *x*-axis and about the *y*-axis.

Solution. (a) To find the surface area in case when the curve is revolved about the *x*-axis we use the formula

$$S_{x} = 2\pi \int_{0}^{1} y(t) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} = 2\pi \int_{0}^{1} \sinh t \sqrt{\sinh^{2} t + \cosh^{2} t} dt = 2\pi \int_{0}^{1} \sinh t \sqrt{2\cosh^{2} t - 1} dt.$$

Taking $u = \cosh t$ we have $du = \sinh t dt$ and $S_x = 2\pi \int_{1}^{\cosh 1} \sqrt{2u^2 - 1} du$. Let $v = \sqrt{2}u$ then

$$S_{x} = \sqrt{2}\pi \int_{\sqrt{2}}^{\sqrt{2}\cosh 1} \sqrt{v^{2} - 1} dv = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt{v^{2} - 1} - \ln(v + \sqrt{v^{2} - 1}) \right) \Big|_{\sqrt{2}}^{\sqrt{2}\cosh 1} = \frac{\sqrt{2}\pi}{2} \left(v\sqrt$$

$$= \pi (\cosh 1\sqrt{2\cosh^2 1 - 1} - 1) + \frac{\sqrt{2}\pi}{2} \ln \frac{\sqrt{2} + 1}{\sqrt{2}\cosh 1 + \sqrt{2\cosh^2 1 - 1}} \approx 5.07$$

(b) If the curve is revolved about the *y*-axis we have

$$S_{y} = 2\pi \int_{0}^{1} x(t) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} = 2\pi \int_{0}^{1} \cosh t \sqrt{\sinh^{2} t + \cosh^{2} t} dt = 2\pi \int_{0}^{1} \cosh t \sqrt{2\sinh^{2} t + 1} dt.$$

Taking $u = \sinh t$ we have $du = \cosh t dt$ and $S_y = 2\pi \int_0^{\sinh 1} \sqrt{2u^2 + 1} du$. Let $v = \sqrt{2}u$ then

$$S_{y} = \sqrt{2}\pi \int_{0}^{\sqrt{2} \sinh 1} \sqrt{v^{2} + 1} dv = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} \sinh 1} = \frac{\sqrt{2}\pi}{2} \left[v\sqrt{v^{2} + 1} + \ln(v + \sqrt{v^{2} + 1}) \right]_{0}^{\sqrt{2} + 1} + \frac{\sqrt{2}\pi$$

$$= \pi \sinh (1\sqrt{2} \sinh^2 (1+1)) + \frac{\sqrt{2\pi}}{2} \ln(\sqrt{2} \sinh (1+\sqrt{2} \sinh^2 (1+1))) \approx 10.00$$

7. Find the arc length of the curve $y = 3^x$, $0 \le x \le 1$.

Solution. According to the formula for arc length we have

$$L = \int_{0}^{1} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{0}^{1} \sqrt{1 + (3^{x} \ln 3)^{2}} dx = \int_{0}^{1} \sqrt{1 + 9^{x} \ln^{2} 3} dx.$$

Let
$$u = \sqrt{1 + 9^x \ln^2 3}$$
. Then $u^2 = 1 + 9^x \ln^2 3$ whence

$$2udu = 9^x (\ln 9)(\ln^2 3) dx = 2(\ln^3 3)9^x dx$$
 and, because $9^x = \frac{u^2 - 1}{\ln^2 3}$, we

have
$$dx = \frac{du}{(\ln^3 3)9^x} = \frac{du}{(\ln 3)(u^2 - 1)}$$
. Therefore

$$L = \frac{1}{\ln 3} \int_{\sqrt{1 + \ln^2 3}}^{\sqrt{1 + 9\ln^2 3}} \frac{u^2 du}{u^2 - 1} = \frac{1}{\ln 3} \int_{\sqrt{1 + \ln^2 3}}^{\sqrt{1 + 9\ln^2 3}} \left(1 + \frac{1}{2} \frac{1}{u - 1} - \frac{1}{2} \frac{1}{u + 1} \right) du =$$

$$=\frac{1}{\ln 3}\left[\sqrt{1+9\ln^2 3}-\sqrt{1+\ln^2 3}+\frac{1}{2}\ln\frac{\sqrt{1+9\ln^2 3}-1}{\sqrt{1+9\ln^2 3}+1}-\frac{1}{2}\ln\frac{\sqrt{1+\ln^2 3}-1}{\sqrt{1+\ln^2 3}+1}\right]\approx 2.25.$$