172 Calculus 2

Review 1

In problems 1 - 8 find the antiderivatives.

- 1. $\int \frac{3x^5}{\sqrt[4]{2x^6+1}} dx$ We make the following substitution $u = 2x^6+1$. Then $du = 12x^5 dx$ and therefore $3x^5 dx = \frac{1}{4} du$. After the substitution we get the following integral $\frac{1}{4} \int \frac{1}{\sqrt[4]{u}} du$ and by Power Rule $\frac{1}{4} \int u^{-(1/4)} du = \frac{1}{4} \times \frac{4}{3} u^{3/4} + C = \frac{1}{3} (2x^6+1)^{3/4} + C$.
- 2. $\int \tan^2 t \sec^4 t dt$. Because the power of secant is even it is convenient to write the integral as $\int \tan^2 t \sec^2 t \sec^2 t dt$ and, recalling that $\sec^2 t = \tan^2 t + 1$, as $\int \tan^2 t (\tan^2 t + 1) \sec^2 t dt$. After performing the substitution $u = \tan t$ (recall that $du = \sec^2 t dt$) we have $\int u^2 (u^2 + 1) du = \int (u^4 + u^2) du = \frac{u^5}{5} + \frac{u^3}{3} + C = \frac{\tan^5 t}{5} + \frac{\tan^3 t}{3} + C$.
- 3. $\int \frac{dx}{x^2 \sqrt{x^2 5}}$. We will use here a trigonometric substitution $x = \sqrt{5} \sec t$. Then $x^2 5 = 5 \sec^2 t 5 = 5 \tan^2 t \text{ and } \sqrt{x^2 5} = \sqrt{5} \tan t$. Also $dx = \sqrt{5} \tan t \sec t dt$. We plug in these expressions and obtain the following $\operatorname{integral} \int \frac{\sqrt{5} \tan t \sec t dt}{5 \sec^2 t \sqrt{5} \tan t} = \frac{1}{5} \int \frac{1}{\sec t} dt = \frac{1}{5} \int \cos t dt = \frac{1}{5} \sin t + C$. Using the identity $\sin t = \frac{\tan t}{\sec t} \text{ and recalling that } \tan t = \frac{\sqrt{x^2 5}}{\sqrt{5}} \text{ and } \sec t = \frac{x}{\sqrt{5}} \text{ we can express our result}$ as $\int \frac{dx}{x^2 \sqrt{x^2 5}} = \frac{\sqrt{x^2 5}}{5x} + C$.
- 4. $\int \sqrt{2x^2 + 2x + 3} dx$. First we will complete the square. $2x^2 + 2x = 2(x^2 + x) = 2[(x + \frac{1}{2})^2 \frac{1}{4}] = 2(x + \frac{1}{2})^2 \frac{1}{2}$. The integral becomes $\int \sqrt{2(x + \frac{1}{2})^2 + \frac{5}{2}} dx$ which is a little bit more convenient to write $\operatorname{as} \frac{1}{\sqrt{2}} \int \sqrt{4(x + \frac{1}{2})^2 + 5} dx$. Let $u = x + \frac{1}{2}$ then du = dx and the integral becomes $\frac{1}{\sqrt{2}} \int \sqrt{4u^2 + 5} du$. Now we perform a trigonometric substitution. $u = \frac{\sqrt{5}}{2} \tan t$.

Then $4u^2 + 5 = 5 \tan^2 t + 5 = 5 \sec^2 t$ and $du = \frac{\sqrt{5}}{2} \sec^2 t dt$. Thus our integral becomes $\frac{5}{2\sqrt{2}} \int \sec^3 t dt = \frac{5}{4\sqrt{2}} \left(\sec t \tan t + \ln|\sec t + \tan t| \right) + C$. But $\tan t = \frac{2u}{\sqrt{5}} = \frac{2x+1}{\sqrt{5}}$ and $\sec t = \frac{\sqrt{4u^2 + 5}}{\sqrt{5}} = \frac{\sqrt{4x^2 + 4x + 6}}{\sqrt{5}}$ whence the answer can be written $\tan t = \frac{2u}{\sqrt{5}} = \frac{2x+1}{\sqrt{5}} = \frac{2x+1}$

5. $\int \cos(3x)x^2 dx$. We have to integrate by parts twice. First time we take $u = x^2$, $dv = \cos(3x)dx$. Then du = 2xdx and $v = \frac{1}{3}\sin(3x)$. Plugging these expressions into the formula $\int udv = uv - \int vdu$ we get $\int \cos(3x)x^2 dx = \frac{1}{3}x^2\sin(3x) - \frac{2}{3}\int x\sin(3x)dx$. To the integral in the right part we apply integration by parts once again taking u = x and $dv = \sin(3x)dx$. Then du = dx and $v = -\frac{1}{3}\cos(3x)dx$. Thus we have

$$\int \cos(3x)x^2 dx = \frac{1}{3}x^2 \sin(3x) - \frac{2}{3} \left(-\frac{1}{3}x \cos(3x) + \frac{1}{3} \int \cos(3x) dx \right) =$$

$$= \frac{1}{3}x^2 \sin(3x) + \frac{2}{9}x \cos(3x) - \frac{2}{27}\sin(3x) + C$$

6. $\int \frac{x^2 + x + 1}{x^3(x+1)} dx$. We integrate a proper rational fraction so we can start with its decomposition into partial fractions.

 $\frac{x^2 + x + 1}{x^3(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{D}{x+1}$. Multiplying both parts of this identity by the common denominator $x^3(x+1)$ we get the identity

$$x^{2} + x + 1 = Ax^{2}(x+1) + Bx(x+1) + C(x+1) + Dx^{3}$$
 (*)

Two of the coefficients in (*) can be found quite easily. If we plug in x = 0 we get C = 1, and if we plug in x = -1 we get D = -1. Next, let us compare coefficients by x^3 in both parts of (*). In the left part the coefficient is 0, in the right it is A + D.

Thus, A = 1. Finally, to find B we compare coefficients by x^2 in both parts of (*). We get 1 = A + B whence B = 0. Now we can finish the integration.

$$\int \frac{x^2 + x + 1}{x^3(x+1)} dx = \int \left(\frac{1}{x} + \frac{1}{x^3} - \frac{1}{x+1}\right) dx = \ln|x| - \frac{1}{2x^2} - \ln|x+1| + C = \ln\left|\frac{x}{x+1}\right| - \frac{1}{2x^2} + C.$$

7. $\int \frac{3x^2 - 5x + 6}{(x^2 - 1)(x^2 + 4)^2} dx$. Again we integrate a proper rational function. The

corresponding decomposition into partial fractions is

$$\frac{3x^2 - 5x + 6}{(x^2 - 1)(x^2 + 4)^2} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{Cx + D}{x^2 + 4} + \frac{Ex + F}{(x^2 + 4)^2}$$
; After multiplying both parts by the

common denominator we

have

$$3x^2 - 5x + 6 = A(x+1)(x^2+4)^2 + B(x-1)(x^2+4)^2 + (Cx+D)(x^2-1)(x^2+4) + (Ex+F)(x^2-1).$$

If we plug in x = 1 we get 4 = 50A whence $A = \frac{2}{25}$. Respectively, taking x = -1 gives us

$$14 = -50B$$
 and $B = -\frac{7}{25}$. Comparing coefficients by x^5 provides the equation

0 = A + B + C whence $C = \frac{1}{5}$. On the other hand if we compare coefficients by x^4 we

get
$$0 = A - B + D$$
 and $D = -\frac{9}{25}$. To find E we will compare coefficients by x,

$$-5 = 16A + 16B - 4C - E$$
, whence $E = 5 + 16A + 16B - 4C = 5 + \frac{32}{25} - \frac{112}{25} - \frac{4}{5} = 1$. Finally,

comparing the constant terms we get

$$6 = 16A - 16B - 4D - F$$
 whence $F = 16A - 16B - 4D - 6 = \frac{32}{25} + \frac{112}{25} + \frac{36}{25} - 6 = \frac{30}{25} = \frac{6}{5}$.

We got that

$$\int \frac{3x^2 - 5x + 6}{(x^2 - 1)(x^2 + 4)^2} dx = \frac{2}{25} \int \frac{1}{x - 1} dx - \frac{7}{25} \int \frac{1}{x + 1} dx + \frac{1}{5} \int \frac{x}{x^2 + 4} dx - \frac{9}{25} \int \frac{1}{x^2 + 4} dx + \int \frac{x}{(x^2 + 4)^2} dx + \frac{6}{5} \int \frac{1}{(x^2 + 4)^2} dx$$

The computation of the first two integrals is immediate,

 $\int \frac{x}{x^2 + 4} dx = \frac{1}{2} \ln(x^2 + 4)$ because the numerator equals to ½ of the derivative of the

denominator, and $\int \frac{1}{x^2 + 4} dx = \frac{1}{2} \arctan\left(\frac{x}{2}\right)$ according to the

formula
$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right), a > 0$$
.

To compute the integral $\int \frac{x}{(x^2+4)^2} dx$ we make the substitution $u = x^2+4$. It results in $\int \frac{x}{(x^2+4)^2} dx = \frac{1}{2} \int \frac{1}{u^2} du = -\frac{1}{2u} = -\frac{1}{2(x^2+4)}$. Finally, to compute the integral $\int \frac{1}{(x^2+4)^2} dx$ we use the reduction

formula
$$\int \frac{1}{(x^2 + a^2)^n} dx = \frac{1}{a^2} \left[\frac{1}{2n - 2} \cdot \frac{x}{(x^2 + a^2)^{n - 1}} + \frac{2n - 3}{2n - 2} \int \frac{1}{(x^2 + a^2)^{n - 1}} \right].$$
 Applying this

formula in case when n = 2 and a = 2 we

$$get \int \frac{1}{(x^2+4)^2} dx = \frac{1}{8} \frac{x}{x^2+4} + \frac{1}{8} \int \frac{1}{x^2+4} dx = \frac{1}{8} \frac{x}{x^2+4} + \frac{1}{16} \arctan\left(\frac{x}{2}\right).$$
 Plugging these

expressions into the formula above and combining like terms we obtain the answer

$$\int \frac{3x^2 - 5x + 6}{(x^2 - 1)(x^2 + 4)^2} dx = \frac{2}{25} \ln|x - 1| - \frac{7}{25} \ln|x + 1| + \frac{1}{10} \ln(x^2 + 4) - \frac{21}{200} \arctan\left(\frac{x}{2}\right) - \frac{1}{2(x^2 + 4)} + \frac{3}{20} \frac{x}{x^2 + 4} + C$$

8. $\int \frac{\sin x}{\sin x - \cos x} dx$. We will compute the integral with the help of a rationalizing substitution. First we will divide both the numerator and the denominator by $\cos x$.

Then $\int \frac{\sin x}{\sin x - \cos x} dx = \int \frac{\tan x}{\tan x - 1} dx$. Next we perform the substitution $u = \tan x$.

Then
$$x = \arctan u$$
, $dx = \frac{1}{1+u^2} du$, and $\int \frac{\sin x}{\sin x - \cos x} dx = \int \frac{u}{(u-1)(u^2+1)} du$. The

decomposition into partials provides $\frac{u}{(u-1)(u^2+1)} = \frac{A}{u-1} + \frac{Bu+C}{u^2+1}$ whence

$$u = A(u^2 + 1) + (Bu + C)(u - 1)$$
. Plugging in $u = 1$ we obtain $A = \frac{1}{2}$. Comparing

coefficients by u^2 provides A + B = 0 whence $B = -\frac{1}{2}$. Finally, comparing the constant

terms we get A - C = 0 whence $C = \frac{1}{2}$. Therefore

$$\int \frac{u}{(u-1)(u^2+1)} du = \frac{1}{2} \left[\int \frac{1}{u-1} du - \int \frac{u}{u^2+1} du + \int \frac{1}{u^2+1} du \right] = \frac{1}{2} \ln|u-1| - \frac{1}{4} \ln(u^2+1) + \frac{1}{2} \arctan u$$

Recall that $u = \tan x$ whence $\tan u = x$ and $u^2 + 1 = \tan^2 x + 1 = \sec^2 x$. Now, we can write the answer as

$$\int \frac{\sin x}{\sin x - \cos x} dx = \frac{1}{2} \ln|\tan x - 1| - \frac{1}{2} \ln|\sec x| + \frac{x}{2} + C.$$